
BIBTOOL
A Tool to Manipulate BibTEX Files

Version 2.68

BibTool Manual

Gerd Neugebauer

Abstract

BibTEX provides an easy to use means to integrate citations and bibliographies
into LATEX documents. But the user is left alone with the management of the
BibTEX files. The program BibTool is intended to fill this gap. BibTool
allows the manipulation of BibTEX files which goes beyond the possibilities
– and intentions – of BibTEX. The possibilities of BibTool include sorting
and merging of BibTEX data bases, generation of uniform reference keys, and
selecting of references used in a publication.

2

This file is part of BibTool Version 2.68

Copyright c© 2019 Gerd Neugebauer

BibTool is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 1, or (at your option) any later version.
BibTool is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with this
documentation; see the file COPYING. If not, write to the Free Software Foundation, 675
Mass Ave, Cambridge, MA 02139, USA.

Gerd Neugebauer
Im Lerchelsböhl 5
64521 Groß-Gerau (Germany)
Net: http://www.gerd-neugebauer.de/
E-Mail: gene@gerd-neugebauer.de

http://www.gerd-neugebauer.de/
mailto:gene@gerd-neugebauer.de

Contents

1. Introduction 5
1.1. Related Programs . 5
1.2. Using BibTool—Some Instructive Examples 7

1.2.1. Sorting and Merging . 7
1.2.2. Key Generation . 8
1.2.3. Normalization . 10
1.2.4. Extracting Entries for a Document 11
1.2.5. Extracting Entries Matching a Regular Expression 11
1.2.6. Translating ISO 8859-1 Characters 12
1.2.7. Correctly Sorting Cross-referenced Entries 13
1.2.8. Petering Out Fields . 13
1.2.9. BibTool for BibLATEX . 14

1.3. Interfacing BibTool with Other Programming Languages 14
1.4. Getting BibTool, Hot News, and Bug Reports 15
1.5. Contributing to BibTool . 16

A. Reference Manual 17
A.1. Beware of the Command Line . 17
A.2. Command Line Usage and Resource Files 17
A.3. Exit Code . 21
A.4. Input File Specification and Search Path 21
A.5. Output File Specification and Status Reporting 23
A.6. Parsing and Pretty Printing . 24
A.7. Sorting . 29
A.8. Regular Expression Matching . 31
A.9. Selecting Items . 33

A.9.1. Extracting by aux Files . 33
A.9.2. Extracting with Sub-string Matching 34
A.9.3. Extracting with Regular Expressions 35
A.9.4. Extracting and Cross-references . 36
A.9.5. Inheritance and Cross-references 37

A.10.Key Generation . 39
A.10.1.Aliases for Renamed Entries . 44

A.11.Format Specification . 44
A.11.1.Constant Parts . 44
A.11.2.Formatting Fields . 45

3

4 Contents

A.11.3.Pseudo Fields . 53
A.11.4.Conjunctions . 54
A.11.5. If-Then-Else . 55
A.11.6.Alternatives . 55
A.11.7.Grouping . 55
A.11.8. Ignored Words . 56
A.11.9.Expanding TEX/LATEX Macros . 56
A.11.10.Name Formatting . 58
A.11.11.Example . 59

A.12.Field Manipulation . 61
A.12.1.Adding Fields . 61
A.12.2.Deleting Fields . 62
A.12.3.Keeping Fields . 62
A.12.4.Renaming Fields . 63
A.12.5.Field Rewriting . 64
A.12.6.Field Ordering . 67

A.13.Semantic Checks . 68
A.13.1.Finding Double Entries . 68
A.13.2.Non-unique Fields . 69
A.13.3.Regular Expression Checks . 69

A.14.Strings – also called Macros . 71
A.15.Statistics . 72
A.16.BibTEX1.0 Support . 73

A.16.1. Including Bibliographies . 73
A.16.2.Aliases . 73
A.16.3.Modifications . 74

B. Limitations 75
B.1. Limits of BibTool . 75
B.2. Bugs and Problems . 75

C. Sample Resource Files 77
C.1. The Default Settings . 77
C.2. BibLATEX Support . 78
C.3. Useful Translations . 83
C.4. Other Resource Files . 84

1. Introduction

The user’s manual is divided into two parts. In this first part the big picture on BibTool
is shown. The next chapter after this one is then devoted to the nitty gritty details.

1.1. Related Programs

BibTEX [Lam94, Pat88a, Pat88b] is a system for integrating bibliographic information
into LATEX [Lam94] documents. BibTEX is designed to serve exactly this purpose. It
has shown that various tasks in relation with managing bibliographic databases are not
covered by BibTEX. Usual activities on bibliographic databases include

• inserting new entries
• editing
• using citations in documents
• sorting and merging of bibliographic data bases
• extraction of bibliographic data bases

Since only the integration in documents is covered by BibTEX several utilities emerged
to fill the gaps. We will sketch some of them shortly.
BibTEX is a program by Oren Patashnik to select publications used in a LATEX document

and format them for inclusion into this document. This program should be part
of each TEX installation.

biber is a program to replace BibTEX when used in combination with BibLATEX
bibclean is a program by Nelson H.F. Beebe to pretty-print BibTEX files. It also can

act as syntax checker. The C sources can be compiled on several systems.
bibindex/biblook is a pair of programs by Nelson H.F. Beebe to generate an index for a

BibTEX file and use it to perform a fast look-up of certain entries. The programs
so far run only under UNIX.

bibsort is a UNIX shell script by Nelson H.F. Beebe to sort a BibTEX file.
bibextract is a UNIX shell script by Nelson H.F. Beebe to extract entries from a BibTEX

file which are used in a LATEX document.
lookbibtex/bibdestringify are Perl scripts by John Heidemann to extract entries from

a BibTEX file which are used in a LATEX document and to remove strings from a
BibTEX file.

5

https://www.ctan.org/pkg/bibtex
https://www.ctan.org/pkg/biber
https://www.ctan.org/pkg/biblatex/
https://www.ctan.org/pkg/bibclean
https://www.ctan.org/pkg/biblook
https://www.ctan.org/pkg/bibsort
https://www.ctan.org/pkg/bibextract
https://www.ctan.org/pkg/lookbibtex

6 1. Introduction

bibtools is a collection of UNIX shell scripts by David Kotz to add and extract entries
to bibliographic databases. Several small programs are provided to perform special
tasks.

bibview is a Perl script by Dana Jacobsen to extract entries from a BibTEX file which
are used in a LATEX document.

JabRef is a graphical front-end to manage BibTEX databases, designed and built to be
platform independent.

BibCard is a program by William C. Ogden running under X11/xview which provides
a means to edit bibliographic databases.

xbibtex/bibprocess/bibsearch are programs by Nicholas J. Kelly and Christian H. Bischof
running under X11 which provides a means to edit bibliographic databases, add
fields to a BibTEX file and extract certain entries from a BibTEX file.

bibview is an X11 program by Holger Martin, Peter Urban, and Armin Liebl to search
in and manipulate BibTEX files. It is similar to BibCard and hyperbibtex.

tkbibtex is a BibTEX file browser with support for editing, searching sorting and merg-
ing. Written by Peter Corke in Tcl/Tk it runs under Unix and Windows.

bibdb Editor for BibTEX files that runs under Dos and Windows.

qbibman is a graphical user interface by Ralf Görtz utilizing BibTool as underlying
library. It is written in C++ and uses Qt.

Barracuda an X11 Editor for BibTEX files, written in C++ and Qt.

BibTEX-Mode is an extension of the editor GNU-Emacs to provide means to edit
BibTEX files. Several useful operations are provided. There is also a BibTEX-Mode
for the Emacs-like JED-Editor.

btOOL is a Perl library to access BibTEX files. It is implemented in Perl and C and has
been written by Greg Ward.

This is a selection of some programs I have heard of. I have tested some of them and
I have skipped through the documentation of others. Thus the description may be too
short or incomplete. Some additional information can be found in [GMS94, Chapter 13].

Most of those utilities are tailored towards a particular operating system and thus they
are not available on other platforms. Most of these program are made to perform a
single task. Often they can not be configured to suit a personal taste of a user.

Still there are some points not covered by the utilities mentioned above. BibTool tries
to provide the missing features and integrate others into a single tool.

https://www.ctan.org/pkg/bibtools
https://www.ctan.org/pkg/bibview
https://www.ctan.org/pkg/jabref
https://www.ctan.org/pkg/bibcard
https://www.ctan.org/pkg/xbibtex
https://www.ctan.org/pkg/bibview
https://www.ctan.org/pkg/tkbibtex
https://www.ctan.org/pkg/bibdb
https://www.ctan.org/pkg/qbibman
http://barracuda.linuxbox.com/
https://www.ctan.org/pkg/btool/

1.2. Using BibTool—Some Instructive Examples 7

1.2. Using BibTool—Some Instructive Examples

BibTool has been developed on UN*X and UN*X-like machines. This has influenced
many of the design decisions. Version 1 was controlled using numerous command line
options. This way of controlling has been supplemented in version 2 by the concept of a
resource file. This resource file allows the modification of the various internal parameters
determining the behavior of BibTool.

When BibTool has been compiled correctly there should be an executable file named
bibtool1. We will assume that you are running BibTool from a command line inter-
preter. There you can simply issue the command

bibtool

Now BibTool will start reading from the standard input lines obeying the rules of a
BibTEX file.2 The entries read are pretty-printed on the standard output. It is obvious
that this behavior is not very useful in itself. The origin of this kind of interface lies in
the concepts of UN*X where many commands can act as filters.

Usually we do not intend to use BibTool in this way. Thus we need a way to specify an
input file. This is simply done by adding the file name as argument after the command
name like in

bibtool file.bib

The result of this command can at once be seen on the screen. The contents of the file
file.bib is pretty printed.

Now that we have seen the simplest case of the application of BibTool we will see the
case of a useful application of BibTool. This application is the sorting and merging of
BibTEX databases.

1.2.1. Sorting and Merging

BibTEX files can be sorted by specifying the command line option -s. The given files are
sorted according to the reference key. Several files can be given at once in which case
BibTool will sort and merge those files.

bibtool -s file1.bib file2.bib

With the command line option -S the files are sorted in reverse ascii order.

bibtool -S file1.bib file2.bib

1Maybe with an additional extension.
2We assume that no resource file can be found. Resource files will be described later.

8 1. Introduction

If you want to sort the BibTEX files according to the authors then the following invocation
should do the trick:

bibtool -s –sort.format=”%N(author)” file1.bib file2.bib

This means that the sorting order is determined by the (normalized) author field. Note
that single quotes encapsulating the sort.format are necessary to prevent the command
line interpreter to gobble the special characters.

If you want to sort the BibTEX files according to the date then you have to know how
the year field is filled. Suppose you know that the year contains the year preceeded by
the month like in Mar 2018. Then the following invocation sorts according to the year:

bibtool -s –sort.format=”%d(year)” file1.bib file2.bib

1.2.2. Key Generation

Once you have a reference and you insert it into a BibTEX file you have to assign a
reference key to it. The problem is to find a key which is unique and meaningful, i.e.
easy to remember. The easiest way to remember a key is to use an algorithm to create
it and remember the algorithm—which is the same for all keys.

One algorithm which comes to mind is to use the author and (an initial part) of the title.
Alternatively we can use the author and the year. But the problem is with industrious
authors writing more than one publication per year. The necessary disambiguation of
such references is not very intuitive. However, BibTool has the capability to describe
desired keys. Thus, the alternatives described above can be realized.

For this section we want to use the following BibTEX entry as our example:3 Suppose it
is contained in a file named sample.bib.

@ARTICLE {article -full ,
author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
journal = {\ mbox{G-Animal ’s} Journal },
year = 1986 ,
volume = 41,
number = 7,
pages = "73+" ,
month = jul ,
note = "This is a full ARTICLE entry",

}

3Shamelessly stolen from the BibTEX xamples.bib file.

1.2. Using BibTool—Some Instructive Examples 9

First, we want to see how we can make keys consisting of author and title. This is one
of my favorite algorithms thus it is rather easy to use it. You simply have to run the
following command:

bibtool -k sample.bib -o sample1.bib

After the command has completed it’s work the following entry can be found in the
output file sample1.bib:

@Article { aamport :gnats ,
author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
journal = {\ mbox{G-Animal ’s} Journal },
year = 1986 ,
volume = 41,
number = 7,
pages = "73+" ,
month = jul ,
note = "This is a full ARTICLE entry"

}

You see that the reference key has been changed. It now consists of the last name and
the first relevant word of the title, separated by a colon. Sometimes it might be desirable
to incorporate the initial names as well. This can be achieved by the command

bibtool -K sample.bib -o sample1.bib

The resulting reference key is aamport.la:gnats. The initials are appended after the
first name. Thus the usual lexicographic order on the keys will (hopefully) bring together
the publications of the same first author.

Another alternative is to use the author and the year. This can be achieved with the
following command:4

bibtool -f %n(author):%2d(year) sample.bib -o sample1.bib

The resulting key is Aamport:86. Note that the last example works as desired for our
sample file. But for a real application of this technique a deep understanding of the key
generation mechanism as described in section A.10 is necessary.

4Note that some command line interpreters (like the UN*X shells) require the format string to be
quoted (enclosed in single quotes).

10 1. Introduction

1.2.3. Normalization

BibTool can be used to normalize the appearance of BibTEX databases. As an example
we can consider the different forms of delimiters for fields. BibTEX allows the use of of
braces or double quotes. Now it can be desirable to use one style only. For this purpose
the rewriting facility of BibTool can be applied.

bibtool – ’rewrite.rule={"ˆ\"\([ˆ#]*\)\"$" "{\1}"}’ -o out.bib

Since this seems to be rather cryptic we will have a closer look at this example. First
we have to mention that the outer quotes are there because the UN*X shell (csh, sh,
bash,...) treats some characters special and we want to avoid this to happen to the
rewrite rule given. A similar quoting mechanism might be required for all command line
interpreters.

The rewrite rule is applied to any field. The first string—called pattern—which is en-
closed in double quotes is matched against the contents of the field. If a match is found
then the matching sub-string is replaced by the replacement text in the second string.

The pattern is a regular expression like the ones used in Emacs. The first character is
the hat (ˆ). This character anchors the match at the beginning of the line. The last
character is the dollar sign which anchors the end at the end of the field value. Thus
only complete matches are considered.

Since we want to find those fields whose values are enclosed in double quotes they are
given after the hat and before the dollar. To avoid a misinterpretation as the end of the
pattern they have to be quoted with the backslash (\).

Next we have the parentheses \(. . . \). They are instructions to memorize the matching
sub-string in a register. Since it is the first instruction of this kind the register number 1
is used.

Now we come to the point where we have to specify the contents of the string. For this
purpose we use a character class—written as [. . .]. Since the first character in this class
specification is a hat this class consists of all characters but those given after the hat.
Thus all characters but the hash sign (#) are allowed.

The star (*) after the character class indicates that an arbitrary number of characters
of this class are allowed.

We have used the complicated construction with a character class to avoid wrong results
which would have resulted when this rewrite rule is applied to a concatenated field value
like the following one:

author = "A. U. Thor" # " and " # "S. O. Meone"

1.2. Using BibTool—Some Instructive Examples 11

Such fields are left unchanged by the rewrite rule given above. We could have used the
point (.) instead of the character class since the point matches any character. But this
would have let to the syntactic wrong result:

author = {A. U. Thor" # " and " # "S. O. Meone}

But we have to complete the explanation of the rewrite rule. The remaining part is the
replacement text. Here we just have to note that the sub-string \1 is not copied verbose
but replaced with the contents of the first register. This register contains the contents
of the field without the delimiting double quotes.

Thus we have a solution to our initial problem which is conservative in the sense that it
sometimes fails but never produces a wrong result.

1.2.4. Extracting Entries for a Document

BibTool can be used to extract the references used in a document. For this purpose
BibTool analyzes the .aux file and takes the information given there. This includes the
names of the BibTEX files. Thus no BibTEX files have to be given in the command line.
Instead the .aux file has to specified—preceded by the option -x.

bibtool -x document.aux -o document.bib

The second option -o followed by a file name specifies the destination of the output.
This means, instead of writing the result to the standard output stream the result is
written into this file.

1.2.5. Extracting Entries Matching a Regular Expression

BibTool can be used to extract the references which fulfill certain criteria. Those criteria
can be specified utilizing regular expressions.5 As a special case we can extract all entries
containing a certain sub-string of the key:

bibtool -X tex all.bib -o some.bib

This instruction selects all entries containing the sub-string tex in the key. The second
option -o followed by a file name specifies the destination of the output. Thus instead
of writing the result to the standard output stream the result is written into this file.

Next we want to look up all entries containing a sub-string in some of its fields. For this
purpose we search for the string in all fields first:6

5Those features are only usable if the regular expression library has been enabled during the configu-
ration of BibTool—which is the default.

6Note that some command line interpreters (e.g the UN*X shells) might need additional quoting of the
select instruction since it contains special characters.

12 1. Introduction

bibtool -- select{”tex”} all.bib -o some.bib

Note that the comparison is not done case sensitive; however this can be customized (see
page 35).

Finally we want to select only those entries containing the sub-string in anyone of cer-
tain fields. For this purpose we simply specify the names of those fields in the select
instruction:

bibtool -- select{title booktitle $key ”tex”} all.bib -o some.bib

This example extracts all entries containing the sub-string tex in the title field, the
booktitle field, or the reference key.

After we have come so far we can say that the first example in this section is in fact a
short version of the following command:

bibtool -- select{$key ”tex”} all.bib -o some.bib

As a simple case of extraction we might want to extract all books from a bibliography.
This can be done with the following command:

bibtool -- select{@book} all.bib -o some.bib

A similar method can also be applied for other entry types.

Note Usually cross-referenced entries are not selected automatically. This can result
in incomplete—and thus incorrect—BibTEX files. To avoid this behavior use the
following command:

bibtool -- select{book} -c all.bib -o some.bib

1.2.6. Translating ISO 8859-1 Characters

Sometimes you need to translate some special characters into BibTEX sequences. Sup-
pose you have edited a BibTEX file and by mistake used those nice characters that are
incompatible with standard ascii as used in BibTEX. You can use BibTool to do the
trick:

bibtool -r iso2tex -i iso.bib -o ascii.bib

1.2. Using BibTool—Some Instructive Examples 13

1.2.7. Correctly Sorting Cross-referenced Entries

BibTEX has a restriction that a cross-referenced entry has to come after the referencing
entry. This can be achieved by putting all entries containing a field “crossref” before
those containing none. As second sorting criterion we want to use the reference key.
This can be achieved with a resource file containing the following instructions

sort.format = {{%1.#s(crossref)a#z}$key}
sort.reverse = off
sort = on

The magic is contained in the first instruction. Thus we will examine it in detail:
%1.#s(crossref)

This formatting instruction does not produce any output but simply acts as con-
dition to determine whether or not to include the following string. The condition
counts the allowed characters (#s) of the field crossref and compares this number
with the given interval [1,∞] (1.).
Thus it detects those entries containing a non empty crossref field.

%1.#s(crossref)a
If the condition holds then the string a is used as part of the sort key.

{%1.#s(crossref)a#z}
If the first condition fails then the next alternative after the hash mark (#) is
considered. This is the string z which will always succeed and thus be included
into the sort key.
Thus this construction will produce a if a crossref field is present and not empty
or z otherwise.

{%1.#s(crossref)a#z}$key
Finally the reference key ($key) is appended to the characterizing initial letter.

The sorting according to ascending ASCII order will bring all the entries with crossref
fields to the beginning.

1.2.8. Petering Out Fields

Sometimes you might be collecting BibTEX files form various sources. Then there might
be additional and for you useless fields. For instance a creator of the BibTEX files may
have included a library number in the field —libno— and you want to get rid of it. In
such a case you can use the resource delete.field as in the following example.
The following instruction is placed in a resource file which is passed to BibTool with
the command line option -r.

delete.field = { libno }

14 1. Introduction

If you have several fileds to delete then you can use the resource delete.field several times.
All fields will be deleted.
Another example can be achieved with the following command line:

bibtool -r keep bibtex wild.bib -o reduced.bib

This invocation utilizes the library keep bibtex.rsc which declares that only those fields
should not be deleted which are defined for the standard styles of BibTEX.
And in a similar way the standard fields of BibLATEX can be kept with the following
command line:

bibtool -r keep biblatex wild.bib -o reduced.bib

1.2.9. BibTool for BibLATEX

BibTool contains the definitions to cope with BibTEX files prepared for BibLATEX. These
definitions are contained in the library biblatex.rsc. It can be easily included on the
command line:

bibtool -r biblatex -i in.bib -o out.bib

Details can be found in section C.2.

1.3. Interfacing BibTool with Other Programming Languages

BibTool can be used as a means for other programming languages to access BibTEX
data bases. In this course BibTool reads the BibTEX file and prints it in a normalized
form which makes it easy for the host programming language to parse it and get the
information about the entries and fields.
In addition BibTool can already pre-select several entries or do other useful transfor-
mations before the host programming language even sees the contents. Thus it is fairly
easy to write a CGI script (e.g. in Perl) which utilizes BibTool to extract certain entries
from a BibTEX data base and presents the result on a HTML page.
Currently the distribution of BibTool contains frames of programs in Perl and Tcl which
can be used as a basis for further developments.
I am working towards making BibTool a linkable library of C code. As one step into
this direction the exported functions and header information has been documented. This
documentation is contained in the distribution.
A tight integration of BibTool into another programming language is possible. As an
experiment into this direction I have chosen Tcl as the target language. The result is
BibTcl which is contained in the distribution of BibTool.

1.4. Getting BibTool, Hot News, and Bug Reports 15

1.4. Getting BibTool, Hot News, and Bug Reports

Usually BibTool can be found on the CTAN or one of its mirrors. Thus you can get
BibTool via HTTP or FTP or extract it from a DVD containing a dump of the CTAN.
It can be found in the following location:

http://mirrors.ctan.org/biblio/bibtex/utils/bibtool

A signature for the source bundle is provided as well. My public key can be found on
http://pgp.mit.edu/. You should search for gene@gerd-neugebauer.de.
BibTool is hosted in a public repository at github7. The repository contains the released
sources as well as the development versions. The repository can be found at

https://github.com/ge-ne/bibtool

I have set up a WWW page for BibTool. It contains a short description of the features
and links to the documentation and the current downloadable version in source form.
The URL is:

http://www.gerd-neugebauer.de/software/TeX/BibTool/

In addition, this page contains a description of the current version of BibTool and a list
of changes in the last few releases.
If you encounter problems installing or using BibTool you can send me a bug report to
my email address gene@gerd-neugebauer.de. Please include the following information
into a bug report:

• The version of BibTool you are using.
• Your hardware specification and operating system version.
• The C compiler you are using and its version. (Only for compilation and installa-

tion problems)
• The resource file you are using. Try to reduce it to the absolute minimum necessary

for demonstrating the problem.
• A small BibTEX file showing the problem.
• The command line options of an invocation of BibTool making the problem ap-

pear.
• A short justification why you think that the behavior is an error.

I have had the experience that compiling this information has helped me find my own
problems in using software. Thus I could fix several problems before sending a bug
report.
On the other side I have unfortunately also had the experience that I have got complains
about problems in my software. After several questions it turned out that the program
had not been used properly.

7It used to be on Sarovar ’till December 2013.

http://mirrors.ctan.org/biblio/bibtex/utils/bibtool
http://pgp.mit.edu/
https://github.com
https://github.com/ge-ne/bibtool
http://www.gerd-neugebauer.de/software/TeX/BibTool/

16 1. Introduction

Oh, sure. There have been bugs and I suppose there are still some bugs in BibTool. I
am grateful for each hint which helps me eliminating these bugs.

1.5. Contributing to BibTool

As you might have read BibTool is free software in the sense of the Free Software
Foundation. This means that you can use it as a whole or parts of it as long as you do
not deny anyone to have the sources and use it freely. See the file COPYING for details.
If you feel morally obliged to provide compensation for the use of this program I have
the following suggestions.

• Proofread this documentation and report any errors you find as well as additional
material to put in.

• Provide additional contributed pieces to BibTool. For instance useful resource
files which could be included into the library.

• Write a useful program and release it to the public without making profit, prefer-
ably under an Open Source license like the GNU General Public License or the
GNU artistic license.

A. Reference Manual

This part of the documentation tries to describe all commands and options. Since the
behavior of BibTool can be adjusted at compile time not all features may be present in
your executable. Thus watch out and complain to the installer if something is missing.

A.1. Beware of the Command Line

Be aware that command line interpreters have different ideas about what to do with a
command line before passing the arguments to a program. Thus it might be necessary
to carefully quote the arguments. Especially if the command contains spaces it is very
likely that quoting is needed.
For instance in UN*X shells it is in general a good strategy to enclose command line
arguments in single quotes (’) if they contain white-space or special characters like \,
$, &, !, or #.
Instead of excessively using command line arguments it is preferable and less error-prone
to put the major configuration into a resource file and just include this resource file on
the command line. Details on this are described in the next section.

A.2. Command Line Usage and Resource Files

BibTool can be controlled either by arguments given in the command line or by com-
mands given in a file (or both). Those command files are called resource files. If Bib
Tool is installed correctly you should have the executable command bibtool (maybe
with an additional extension). Depending on your computer and operating system you
can start BibTool in different ways. This can be done either by issuing a command in
a command line interpreter (shell), by clicking an icon, or by selecting a menu item. In
the following description we will concentrate on the use in a UN*X like shell. There you
can type simply

bibtool

Now BibTool is waiting for your input. As you type BibTool reads what you type.
This input is interpreted as data conforming BibTEX file rules. The result is printed
when BibTool is finished. You can terminate the reading phase with your End-Of-File
character (e.g. Control-D on UN*X, or Control-Z on MS-D*S)

17

18 A. Reference Manual

This application in itself is rather uninteresting. Thus we come to the possibility to give
arguments to BibTool. The simplest argument is -h as in

bibtool -h

This command should print the version number and a short description of the command
line arguments to the screen.
The next application is the specification of resources. Resource files can be given in the
command line after the flag -r.

bibtool -r resource file

In this way an arbitrary number of resource files can be given. Those resource files are
read in turn and the commands contained are evaluated. If no resource file is given in the
command line BibTool tries to find one in standard places. First of all the environment
variable BIBTOOLRSC is searched. If it is defined then the value is taken as a list of
resource file names separated by colon (UNIX), semicolon (DOS), or comma (Amiga).
All of them are tried in turn and loaded if they exist. If the environment variable is not
set or no file could be loaded successfully then the default resource file (usually the file
.bibtoolrsc) is tried to be read in the home directory (determined by the environment
variable HOME) or the current directory.
The resource files are searched similar to the searching mechanism for BibTEX files (see
section A.4). The extension .rsc is tried and a search path can be used. This search path
is initialized from the environment variable BIBTOOL. Initially only the current directory
is on the search path. The search path can also be set in a resource file (for following
resource file reading). This can be achieved by setting the resource resource.search.path.

resource.search.path = path

When an explicit resource file is given in the command line the defaults are not used.
To incorporate the default resource searching mechanism the command line option -R
can be used:

bibtool -R

Now let us consider some examples. Suppose that the current directory contains a default
resource file (named .bibtoolrsc) and an additional resource file my rsc.
The following invocation of BibTool uses only the resource file my rsc:

bibtool -r my rsc -i sample

If you want to initialize the resources from the default resource file before you can use
the -R before the inclusion of the resource file:

bibtool -R -r my rsc -i sample

A.2. Command Line Usage and Resource Files 19

If you add the -R argument after the resource specification then the default resource is
evaluated after your resource file. Thus settings are potentially overwritten:

bibtool -r my rsc -R -i sample

Additionally note that resource files are evaluated at once whereas input files are read
in one chunk at the end. Thus you can not specify one set of parameters to be used for
one file and another set of parameters for the next file. This is impossible within one
invocation of BibTool1.

As a consequence of this behavior the last example is equivalent to the following invo-
cations:

bibtool -r my rsc -i sample -R

bibtool -i sample -r my rsc -R

Now we have to describe the commands allowed in a resource file. The general form of
a resource command is of the form

name = {value}

name is the resource name which conforms the rules of BibTEX reference keys. Thus
name can be composed of all characters but white-space characters and

" # % ’ () , = { }

Resource names are currently composed of letters and the period. The next component
is an optional equality sign (=). The equality sign is recommended as it helps detecting
syntax problems. White-space characters surrounding the equality sign or separating
resource name and resource value are ignored. The resource value can be of the following
kind:

• A number composed of digits only.

• A string conforming the rules of resource names, i.e. made up of all but the for-
bidden characters described above.

• A string containing arbitrary characters delimited by double quotes (”) not con-
taining double quotes. Parentheses and curly brackets have to come in matching
pairs.

• A string containing arbitrary characters delimited by curly brackets ({}). Paren-
theses and curly brackets have to come in matching pairs.

1This might be changed in the next major revision (3.0).

20 A. Reference Manual

You can think of resource names as variables or functions in a programming language.
Resource commands simply set the variables to the given value, add the value to the old
value, or initiate a action. There are different types of resources

• Boolean resources can take only the values on and off. The values on, t, true, 1,
and yes are interpreted as the same. For those values the case of the letters is
ignored. Thus true and TrUe are the same. Every other value else is interpreted
as off.

• Numeric resources can take numeric values only.

• String resources can take arbitrary strings.

Usually white-space characters are ignored. There is one exception. The characters % and
act as comment start characters if given between resource commands. All characters
to the end of the line are ignored afterwards.

Now we come the description of the first resource available. To read in additional resource
files the resource file may contain the resource

resource {additional/resource/file}

Thus the resource given above has the same functionality as the command line option
-r described above. Path names should be specified in the normal manner for your
operating system.

One resource command useful for debugging is the print resource. The resource value
is immediately written to the error stream. The output is terminated by a newline
character. Certain translations are performed during the reading of a resource which
can be observed when printing. Each sequence of white-space characters is translated
into a single space.

To end this subsection we give an example of the print resource. In this sample we also
see the possibility to omit the equality sign and use quotes as delimiters.

print ”This is a stupid message.”

Finally we can note that the commands given in a resource file can also be specified on
the command line. This can be achieved with the command line option -- The next
command line argument is taken as a resource command.

bibtool -- resource command

This can be used to issue resource commands which do not have a command line coun-
terpart. One example we have already seen. The print instruction can be used from the
command line with the following

bibtool -- print{hello world}

A.3. Exit Code 21

A.3. Exit Code

BibTool as invoked on the command line returns an exit code. This exit code can be
used to control the flow of control for any script which uses BibTool internally.
In general BibTool returns an exit code of 0 if no error occurs. Errors lead to an exit
code different from 0.

Summary

Option Resource command Description

-h Show a list of command line options.
-R Immediately evaluate the instructions from the

default file.
print {message} Write out the text message.

-r file resource = file Immediately evaluate the instructions from the
resource file file.

resource.search.path List of directories to search for resource files.
-- rsc rsc Evaluate the resource instruction rsc.

A.4. Input File Specification and Search Path

An arbitrary number of input files can be specified. Input files can be specified in two
ways. The command line option -i is immediately followed by a file name. Since no
restriction on the file name is applied this can also be used to specify files starting with
a dash.

bibtool -i input file

The resource name input can be used to specify additional input files.

input {input file}

Input files are processed in the order they are given. If no input file is specified the
standard input is used to read from.
Depending on the special configuration of BibTool there are two ways of searching
for BibTEX files. The native mode of BibTool uses a list of directories and a list of
extensions to find a file. Alternatively the kpathsea library can be used which provides
additional features like the recursive searching in sub-directories. First we look at the
native BibTool searching mechanism.
The files are searched in the following way. If the file is can’t be opened as given the
extension .bib is appended and another read is tried. In addition directories can be
given which are searched for input files. The search path can be given in two different

22 A. Reference Manual

ways. First, the resource name bibtex.search.path can be set to contain a search path
specification.

bibtex.search.path = {directory1:directory2:directory3}

The elements of the search path are separated by colons. Thus colons are not allowed
as parts of directories. Another source of the search path is the environment variable
BIBINPUTS. This environment variable is usually used by BibTEX to specify the search
path. The syntax of the specification is the same as for the resource bibtex.search.path. To
check the appropriate way to set your environment variable consult the documentation
of your shell, since this is highly dependent on it.

To allow adaption to operating systems other than UN*X the following resources can
be used. The name of the environment bibtex.env.name overwrites the name of the
environment variable which defaults to BIBINPUTS.

bibtex.env.name = {ENVIRONMENT VARIABLE}

The first character of the resource env.separator is used as separator of directories in the
resource bibtex.search.path and the environment variable given as bibtex.env.name.

env.separator = {:}

The default character separating directories in a file name is the slash (/). The first
character of the resource dir.file.separator can be used to change this value.

dir.file.separator = {\}

Note that the defaults for env.separator and dir.file.separator are set at compile time
to a value suitable for the operating system. Usually you don’t have to change them
at all. For instance for MSD*S machines the env.separator is usually set to ; and the
dir.file.separator is usually set to \.

If the kpathsea library is used for searching BibTEX files then some of the resources
described above have no effect. They are replaced by their kpathsea counterparts. Most
probably you are using the kpathsea library already in other TEX related programs. Thus
I just have to direct you to the documentation distributed with the kpathsea library for
details.

A.5. Output File Specification and Status Reporting 23

Summary

Option Resource command Description

bibtex.env.name={var} Use the environment variable env to add more
directories to the search path for BibTEX (in-
put) files.

bibtex.search.path={path} Use the list of directories path to find BibTEX
(input) files.

dir.file.separator={c} Use the character c to separate the directory
from the file.

env.separator={c} Use the character c to separate directories in
a path.

-i file input{file} Add the BibTEX file file to the list of input
files.

A.5. Output File Specification and Status Reporting

By default, the processed BibTEX entries are written to the standard output. This
output can be redirected to a file using the command line option -o as in

bibtool -o output file

The resource name output.file can also be used for this purpose.

output.file = {output file}

The output file may be one of the special values. If the output file is a single minus sign
then the output is redirected to the standard output stream as shown in the following
example:

output.file = {-}

If the output file is the empty string – i.e. no characters at all – then the output is
suppressed entirely. This can be useful for instance if the input file should be validated
only. An empty output file can be seen in the following example:

output.file = {}

No provisions are made to check if the output file is the same as a input file.
A second output stream is used to display error messages and status reports. The
standard error stream is used for this purpose.
The messages can roughly be divided in three categories: error messages, warnings, and
status reports. Error messages indicate severe problems. They can not be suppressed.
Warnings indicate possible problems which could (possibly) have been corrected. They

24 A. Reference Manual

are displayed by default but can be suppressed. Status reports are messages during the
processing which indicate actions currently performed. They are suppressed by default
but can be enabled.

Warning messages can be suppressed using the command line option -q. This option
toggles the Boolean quiet value.

bibtool -q

The same effect can be obtained by assigning the value on or off to the resource quiet:

quiet = on

Status reports are useful to see the operations performed. They can be enabled using
the command line option -v. This option toggles the Boolean verbose value.

bibtool -v

The same can also be achieved with the Boolean resource verbose:

verbose = on

Another output stream can be used to select the string definitions. This is described in
section A.14 on macros.

Summary

Option Resource command Description

-o file output.file {file} Direct output to the file file. If file is - then
the standard output is used. If the file is the
empty string then the output is suppressed.

-q quiet=on Suppress warnings. Errors can not be sup-
pressed.

-v verbose=on Enable informative messages on the activities
of BibTool.

A.6. Parsing and Pretty Printing

The first and simplest task we have to provide on BibTEX files is the parsing and pretty
printing. This is not superfluous since BibTEX is rather pedantic about the accepted
syntax. Thus I decided to try to be generous and correct as many errors as I can.

This can be changed with the resource parse.exit.on.error. If this resouce is turned on then
BibTool exits iimediately when an error during the parsing is encountered. The default
is off. parse.exit.on.error = on

A.6. Parsing and Pretty Printing 25

Each input file is parsed and stored in an internal representation. BibTEX simply ignores
any characters between entries. BibTool stores the comments and attaches them to
the entry immediately following them. Normally anything between entries is simply
discarded and a warning printed. The Boolean resource pass.comments can be used to
change this behavior.

pass.comments = on

If this resource is on then the characters between entries are directly passed to the output
file. This transfer starts with the first non-space character after the end of an entry.

The standard BibTEX styles support a limited number of entry types. Those are prede-
fined in BibTool. Additional entry types can be defined using the resource new.entry.type
as in

new.entry.type {Anthology}

This option can also be used to redefine the appearance of entry types which are already
defined. Suppose we have defined Anthology as above. Afterwards we can redefine this
entry type to be printed in upper case with the following option:

new.entry.type {ANTHOLOGY}

Each undefined entry type leads to an error message.

When a database is printed the different kinds of entries are printed together. For in-
stance all normal entries are printed en block. The order of the entry types is determined
by the resource print.entry.types. The value of this resource is a string where each char-
acter represents an entry type to be printed. If a letter is missing then this part of the
database is omitted. The following letters are recognized—uppercase letters are folded
to their lowercase counterparts if they are not mentioned explicitly:

a The aliases of the database.

c The comments of the database which are not attached to an entry.

i The includes of the database.

m The modifies of the database.

n The normal entries of the database.

p The preambles of the database.

$ The strings (macros) of the database.

S The strings (macros) of the database which are used in the other entries.

s The strings (macros) of the database where the resource print.all.strings determines
whether all strings are printed or the used ones only.

26 A. Reference Manual

The following invocation prints the preambles and the normal entries only. This can be
desirable if the macros are printed into a separate file.

print.entry.types {pn}

The internal representation is printed in a format which can be adjusted by certain
options. Those options are available through resource files or by specifying resources on
the command line.

print.line.length This numeric resource specifies the desired width of the lines. lines
which turn out to be longer are tried to split at spaces and continued in the next
line. The value defaults to 77.

print.indent This numeric resource specifies indentation of normal items, i.e. items in
entries which are not strings or comments. The value defaults to 2.

print.align This numeric resource specifies the column at which the ’=’ in non-comment
and non-string entries are aligned. This value defaults to 18.

print.align.key This numeric resource specifies the column at which the keys in non-
comment and non-string entries are aligned. This value defaults to 18.

print.align.string This numeric resource specifies the column at which the ’=’ in string
entries are aligned. This value defaults to 18.

print.align.preamble This numeric resource specifies the column at which preamble en-
tries are aligned. This value defaults to 11.

print.align.comment This numeric resource specifies the column at which comment en-
tries are aligned.2 This value defaults to 10.

print.comma.at.end This Boolean resource determines whether the comma between
fields should be printed at the end of the line. If it is off then the comma is
printed just before the field name. In this case the alignment given by print.align
determines the column of the comma.

print.equal.right This Boolean resource specifies whether the = sign in normal entries
is aligned right. If turned off then the = sign is flushed left to the field name. This
value defaults to on.

print.newline This numeric resource specifies the number of newlines between entries.
This value defaults to 1.

print.terminal.comma This Boolean resource specifies whether a comma should be printed
after the last record of a normal entry. This contradicts the rules of BibTEX but
might be useful for other programs. This value defaults to off.

2This is mainly obsolete now since comments do not have to follow any syntactic restriction.

A.6. Parsing and Pretty Printing 27

print.use.tab This Boolean resource specifies if the TAB character should be used for
indenting. This use is said to cause portability problems. Thus it can be disabled.
If disabled then the appropriate number of spaces are inserted instead. This value
defaults to on.

print.wide.equal This Boolean resource determines whether the equality sign should be
forced to be surrounded by spaces. Usually this resource is off which means that
no spaces are required around the equality sign and they can be omitted if the
alignment forces it.

suppress.initial.newline This Boolean resource suppresses the initial newline before nor-
mal records since this might be distracting under certain circumstances.

The resource values described above are illustrated by the following examples. First we
look at a string entry.

print.line.lengthprint.align.string

Next we look at an unpublished entry. It has a rather long list of authors and a long
title. It shows how the lines are broken.

@Unpublished{ unpublished-key,
author = "First A. U. Thor and Seco N. D. Author and Third A. Uthor

and others",
title = "This is a rather long title of an unpublished entry which

exceeds one line",
note = "Some useless comment"

}

print.align.key

print.line.lengthprint.alignprint.indent

The field names of an entry are usually printed in lower case. This can be changed with
the resource new.field.type. The argument of this resource is an equation where left of
the ’=’ sign is the name of a field and on the right side is it’s print name. They should
only contain allowed characters.

new.field.type { author = AUTHOR }

This feature can be used to rewrite the field types. Thus it is completely legal to have
a different replacement text than the original field:

new.field.type { OPTauthor = Author }

String names are used case insensitive by BibTEX. BibTool normalizes string names
before printing. By default string names are translated to lower case. Currently two
other types are supported: translation to upper case and translation to capitalized case,
i.e. the first letter upper case and the others in lower case.

28 A. Reference Manual

The translation is controlled by the resource symbol.type. The value is one of the strings
lower, upper, and cased. The resource can be set as in

symbol.type = upper

The macro names are passed through the same normalization apparatus as field types.
Thus you can force a rewriting of macro names with the same method as described
above. You should be careful when choosing macro names which are also used as field
types.

The reference key is usually translated to lower case letters unless a new key is generated
(see section A.10). In this case the chosen format determines the case of the key. Some-
times it can be desirable to preserve the case of the key as given (even so BibTEX does
not mind). This can be achieved with the Boolean resource preserve.key.case. Usually it
is turned off (because of backward compatibility and the memory used for this feature).
You can turn it on as in

preserve.key.case = on

If it is turned on then the keys as they are read are recorded and used when printing
the entries. The internal comparisons are performed case insensitive. This is not influ-
enced by the resource preserve.key.case. Especially this holds for sorting which does not
recognize differences in case.

A.7. Sorting 29

Summary

Option Resource command Description

new.entry.type{type} Define a new entry type type.
new.field.type{type} Define a new field type type.
parse.exit.on.error=on Force immediate exit at the first parse error

encountered.
pass.comments=on Do not discard comments but attach them to

the entry following them.
preserve.key.case=on Do not translate keys to lower case when read-

ing.
print.align.comment=n Align comment entries at column n.
print.align.key=n Align the key of normal entries at column n.
print.align.string=n Align the = of string entries at column n.
print.align=n Align the = of normal entries at column n.
print.comma.at.end=on Put the separating comma at then end of the

line instead of the beginning.
print.indent=n Indent normal entries to column n.
print.line.length=n Break lines at column n.
print.print.newline=n Number of empty lines between entries.
print.use.tab=on Use the TAB character to compress multiple

spaces.
print.wide.equal=off Force spaces around the equal sign.
suppress.initial.newline=on Suppress the initial newline before normal

records.
symbol.type=type Translate symbols according to type: upper,

lower, or cased.

A.7. Sorting

The entries can be sorted according to a certain sort key. The sort key is by default the
reference key. Sorting can enabled with the command line switches -s and -S as in

bibtool -s

bibtool -S

The first variant sorts in ascending ascii order (including differentiation of upper and
lower case). The second form sorts in descending ascii order. The same effect can be
achieved with the Boolean resource values sort and sort.reverse respectively.

sort = {on}
sort.reverse = {on}

The resource sort determines whether or not the entries should be sorted. The resource
sort.reverse determines whether the order is ascending (off) or descending (on) ascii

30 A. Reference Manual

order of the sort key. The sort key is initialized from the reference key if not given
otherwise.

Alternatively the sort key can be constructed according to a specification. This spec-
ification can be given in the same way as a specification for key generation. This is
described in section A.10 in detail.

The associated resource name is sort.format. Several formats are combined as alterna-
tives.

sort.format = {%N(author)}
sort.format = {%N(editor)}

Those two lines are equivalent with the single resource

sort.format = {%N(author) # %N(editor)}

This means that the sort key is set to the (normalized) author names if an author is
given. Otherwise it tries to use the normalized editor name. If everything fails the sort
key is empty.

Let us reconsider the unprocessed example on page 8. Without any sort.format instruc-
tions this entry would sorted in under “article-full”. With the sort.format given above it
would be sorted in under “Aamport.LA”.

Note that in ascii order the case is important. The uppercase letters all come before
the lowercase letters.

Usually the keys are folded to lower case during the normalization. Thus the lower case
variants are also used for comparison. The resource preserve.key.case can be used to print
cased keys as they are encountered in the input file. This feature can be combined with
the Boolean resource sort.cased to achieve sorting according to the unfolded reference
key:

preserve.key.case = {on}
sort.cased = {on}

Beside the normal entries the macros (string entries) are sorted. This happens in per
default. The resource sort.macros can be used to turn off this feature as in

sort.macros = {off}

An example of sorting can be seen in section 1.2.1 on page 7.

A.8. Regular Expression Matching 31

Summary

Option Resource command Description

-S Enable sorting of entries in reverse sorting or-
der.

-s sort Enable sorting of entries.
sort.cased=on Use the cased form of the reference key for

sorting.
sort.format{spec} Add disjunctive branch spec to the sort key

specifier.
sort.macros=off Turn off the sorting of string entries.
sort.reverse=on Reverse the sorting order.

A.8. Regular Expression Matching

BibTool makes use of the GNU regular expression library. Thus a short excursion into
regular expressions is contained in this manual. Several examples of the application of
regular expressions can be found also in other sections of this manual.

A concise description of regular expressions is contained in the document regex-0.12/regex.texi
contained in the BibTool distribution. In any cases of doubt this documentation is
preferable. The remainder of this section contains a short description of regular expres-
sions.

Note that the default regular expressions of the Emacs style are used.

Ordinary characters match only to themselves or their upper or lower case counterpart.
Any character not mentioned as special is an ordinary character. Among others
letters and digits are ordinary characters.

For instance the regular expression abc matches the string abc.

The period (.) matches any single character.

For instance the regular expression a.c matches the string abc but it does not
match the string abbc.

The star (*) is used to denote any number of repetitions of the preceding regular ex-
pression. If no regular expression precedes the star then it is an ordinary character.

For instance the regular expression ab*c matches any string which starts with a
followed by an arbitrary number of b and ended by a c. Thus it matches ac and
abbbc. But it does not match the string abcc.

The plus (+) is used to denote any number of repetitions of the preceding regular ex-
pression, but at least one. Thus it is the same as the star operator except that the
empty string does not match. If no regular expression precedes the plus then it is
an ordinary character.

32 A. Reference Manual

For instance the regular expression ab+c matches any string which starts with a
followed by one or more b and ended by a c. Thus it matches abbbc. But it does
not match the string ac.

The question mark (?) is used to denote an optional regular expression. The preceding
regular expression matches zero or one times. If no regular expression precedes the
question mark then it is an ordinary character.

For instance the regular expression ab?c matches any string which starts with a
followed by at most one b and ended by a c. Thus it matches abc. But it does not
match the string abbc.

The bar (\|) separates two regular expressions. The combined regular expression matches
a string if one of the alternative separated by the bar does.

Note that the bar has to be preceded by a backslash.

For instance the regular expression abc\ |def matches the string abc and the string
def.

Parentheses (\(\)) can be used to group regular expressions. A group is enclosed in
parentheses. It matches a string if the enclosed regular expression does.

Note that the parentheses have to be preceded by a backslash.

For instance the regular expression a\(b\ | \d)c matches the strings abc and adc.

The dollar ($) matches the empty string at the end of the string. It can be used to
anchor a regular expression at the end. If the dollar is not the end of the regular
expression then it is an ordinary character.

For instance the regular expression abc$ matches the string aaaabc but does not
match the string abcdef.

The hat (ˆ) matches the empty string at the beginning of the string. It can be used
to anchor a regular expression at the beginning. If the hat is not the beginning
of the regular expression then it is an ordinary character. There is one additional
context in which the hat has a special meaning. This context is the list operator
described below.

For instance the regular expression ˆabc matches the strings abcccc but does not
match the string aaaabc.

The brackets ([]) are used to denote a list of characters. If the first character of the
list is the hat (ˆ) then the list matches any character not contained in the list.
Otherwise it matches any characters contained in the list.

For instance the regular expression [abc] matches the single letter strings a, b, and
c. It does not match d.

The regular expression [ˆabc] matches any single letter string not consisting of an
a, b, or c.

A.9. Selecting Items 33

The backslash (\) is used for several purposes. Primarily it can be used to quote any
special character. Thus if a special character is preceded by the backslash then it
is treated as if it were an ordinary character.
If the backslash is followed by a digit d then this construct is the same as the dth

matching group.
For instance the regular expression (an)\1as matches the string ananas since the
first group matches an.
If the backslash is followed by the character n then this is equivalent to entering a
newline.
If the backslash is followed by the character t then this is equivalent to entering a
single TAB character.

A.9. Selecting Items

A.9.1. Extracting by aux Files

BibTool includes a module to extract BibTEX entries required for a document. This is
accomplished by analyzing the aux file of the document. The aux file is usually produced
by LATEX. It contains the information which BibTEX files and which references are used
in the document. Only those entries mentioned in the aux file are selected for printing.
Since the BibTEX files are already named in the aux file it is not necessary to specify an
input file.
To use an aux file the command line option -x can be given. This option is followed by
the name of the aux file.

bibtool -x file.aux

Multiple files can be given this way. As always the same functionality can be requested
with a resource. The resource extract.file can be used for this purpose.

extract.file {file.aux}

A small difference exists between the two variants. the command line option automat-
ically sets the resource print.all.strings to off. This has to be done in the resource file
manually.
Note that the extraction automatically respects the cross-references in the selected en-
tries. Thus you will get a complete BibTEX file—unless some references can not be
resolved and an error is produced.
One special feature of BibTEX is supported. If the command \nocite{*} is given in the
LATEX file then all entries of the bibliography files are included in the bibliography. The
same behavior is imitated by the extracting mechanism of BibTool.

34 A. Reference Manual

An example of extracting can be seen in section 1.2.4 on page 11.

A.9.2. Extracting with Sub-string Matching

The simplest way of specifying an entry—except by giving its key—is to give a string
which has to be present in one of the fields or pseudo fields. The resource select.by.string
can be used to store a selection rule which is applied at the appropriate time later
on. If several rules are supplied then any entry matching one of the rules is selected.
Thus different rules act as alternatives. This includes rules with regular expressions as
described in section A.9.3.

The simplest form of the resource select.by.string is to specify a single string to search
for. This string has to be enclosed in double quotes. Since the argument of the resource
has to be enclosed in braces we get the following funny syntax:

select.by.string {”some string”}

This operation selects all entries containing some string in one of the normal fields.
The search can be restricted to specific fields or extended to pseudo fields by specifying
those fields before the search string. An arbitrary number of white-space separated fields
can be given there. Thus the general syntax for this resource is as follows:

select.by.string {field1 . . . fieldn ”string”}

To make this selection operation more flexible it is possible to determine whether or not
the comparison against the value of a field is performed case sensitive. This can be done
with the Boolean resource select.case.sensitive. Since the selection is performed after all
resources have been read the value of this resource is only considered then. Thus it
is not possible to mix case sensitive and non case sensitive selections as with regular
expressions (see section A.9.3).

During the matching of the search string against the value of a field BibTool ignores
certain characters. Thus it is possible to hide irrelevant details like braces or spaces.
The characters to ignore are stored in the resource select.by.string.ignored. As a default
the following resource command is performed implicitly:

select.by.string.ignored {”{} []”}

As for the resource select.case.sensitive the evaluation of the resource select.by.string.ig-
nored is performed just before the comparisons are carried out. Thus it is not possible
to use several rules with different ignored sets of characters.

In addition to the functionality described above the resource select.by.non.string can be
used to select all entries for which the match against the given field fails. The general
form is the same as for select.by.string:

A.9. Selecting Items 35

select.by.non.string {field1 . . . fieldn ”string”}

Note Cross-references are not considered unless select.crossrefs is set.

A.9.3. Extracting with Regular Expressions

Another selecting mechanism uses regular expressions to select items. This feature can
be used in addition to the selection according to aux files. The regular expression syntax
is identical to the one used in GNU Emacs. For a description see section A.8.
The resource select allows to specify which fields should be used to select entries. The
general form is as follows:

select {field1 . . . fieldn ”regular expression”}

If no field is specified then the regular expression is searched in each field. If no regular
expression is specified then any value is accepted; i.e. the regular expression "." is used.
Any number of selection rules can be given. An entry is selected if one of those rules
selects it. The select rule selects an entry if this entry has a field named field which
has a sub-string matching regular expression. The field can be missing in which case the
regular expression is tried to match against any field in turn.
The pseudo fields $key, $type, and @type can be used to access the key and the type of
the entry. See page 53 for details. The routines used there are the same as those used
here.
Analogously to the negation of the string matching the regular expression matching can
be negated. The resource to perform this functionality is select.non. The general form is

select.non {field1 . . . fieldn ”regular expression”}

The Boolean resource select.case.sensitive can be used to determine whether the selection
is performed case sensitive or not:

select.case.sensitive = {off}

Note that the selection does not take place immediately. Instead all selection rules are
collected and the selection is performed at an appropriate time later on. The different
selection rules are treated as alternatives. Thus any entry which matches at least one
of the rules is selected. Nevertheless the value of the resource select.case.sensitive is
used which is in effect when the selection rule is issued. Thus it is possible to mix case
sensitive rules with non-case sensitive rule.
A regular expression can be specified in the command line using the option -X as in

bibtool -X regular expression

36 A. Reference Manual

The fields compared against this regular expression are given in the string valued resource
select.fields. Initially this resource has the value $key. In general the value is a list of
fields and pseudo fields to be considered. The elements of the list are separated by
spaces. If the list is empty then all fields and the key are considered for comparison.

Thus the following setting means that the regular only the fields author and editor are
considered when doing a selection.

select.fields = {”author editor”}

Without changing the resource select.fields the command line given previously is equiva-
lent to the (longer) command

bibtool -- select{$key ”regular expression”}

Note that the resources select.case.sensitive and select.fields are used for all regular ex-
pressions following their definition until they are redefined. This means that it is possible
to specify that some comparisons are done case sensitive and others are not done case
sensitive.

Finally the resource extract.regex can be used as in

extract.regex = {regular expression}

This is equivalent to specifying a single regular expression to be matched against the
key. This feature is kept for backward compatibility only. It is not encouraged and will
vanish in a future release.

Note Cross-references are not considered unless select.crossrefs is set.

A.9.4. Extracting and Cross-references

When extracting entries due to contained sub-strings or regular expression matching
cross-references are not considered automatically. This behavior can result in incomplete
and thus incorrect BibTEX files.

The automatic selection of cross-referenced entries can be controlled by the resource
select.crossrefs. This resource is off by default. This means that cross-references are
ignored.

The following instruction can be used to turn on the automatic inclusion of cross-
referenced entries:

select.crossrefs = on

A.9. Selecting Items 37

A.9.5. Inheritance and Cross-references

BibTEX provides one way to include fields from one entry into another. This is accom-
plished with the help of the crossref field.

@Book {book -entry ,
bookauthor = "A. U. Thor",
booktitle = "This is the book title"

}
@InBook {in -book -entry ,

author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
crossref = {book -entry}

}

Sometimes it is desirable to include the fields referenced via crossref and thus avoid-
ing to have referenced entries in the bibliography. This can be accomplished with the
boolean resource expand.crossref. This resource is off by default. This means that
cross-references left as they are.

The following instruction can be used to turn on the automatic expansion of cross-
referenced entries:

expand.crossref = on

Note that the crossref mechanism implemented in BibTool acts like inheritance. This
means that fields not present in the entry containing a crossref field are taken from
the referenced entry. If for instance the entry and the referenced entry both contain a
title filed then the one in the entry in not overwritten by one in the referenced entry.

A referenced entry can in turn contain another crossref field. The referenced entry is
recursively explored. This can lead to infinite cross-reference chains when expanding.
The depth of cross-reference chains can be restricted with the resource crossref.limit.
This numeric value limits the depth of the cross-references. If the actual depth is greater
than this value then the cross-referencing is terminated artificially. The default value is
32.

crossref.limit = 42

BibLATEX [Leh14] has introduced a mechanism to modify the names of the fields which
are included via crossref. This can for instance be useful because the standard styles
expect a title field of a @Book but the same information goes into the booktitle field in
an @InBook.

To support this behaviour BibTool contains a mapping which declares which name for a
field should be substituted when the cross-referencing is expanded. It defines which field

38 A. Reference Manual

name to used when the field is expanded from a source entry of a type with a certain
name into an entry of another type.

This is accomplished with the resource crossref.map. It takes an argument with four
symbols: source entry type, source field name, target entry type, and target field name.
This invocation adds a replacement rule to the set of rules already present:

crossref.map {source.type source.field target.type target.field}

The source type and target type need to be defined entry types. Otherwise a warning is
issued and the new rule is ignored.

To ease the definition of mapping rules the source type and target type can be sets of
types respectively. Those are enclosed in braces and separated with white-space.

crossref.map {{source.type1 source.type2} source.field
{target.type1 target.type2 target.type3} target.field}

In such a case each combination with an element of one of the four constituents is added
as mapping rule.

If a mapping rule exists for one combination of source type, source filed, and target type
when defining a new rule then the old rule is overwritten. The replacement uses the
newly defined target field instead.

Initially the set of mapping rules is empty. If some mapping rules have been defined
they can be cleared with the resource clear.crossref.map. The invocation discards all
previously defined mapping rules.

clear.crossref.map {}

BibLATEX [Leh14] knows of an additional inheritance mechanism. For this purpose a
special entry type @XData can be used. This entry carries the fields to be inherited
by other entries. The inheriting entry contains a field named xdata which contains a
comma separated list of @XData entries from which it inherits.

@XData {x1 ,
bookauthor = "A. U. Thor",
booktitle = "This is the book title"

}
@XData {aw ,

publisher = "Addison - Wesley Publishing ",
address = "Reading , Mass ."

}
@InBook {in -book -entry ,

author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
xdata = {x1 ,aw}

A.10. Key Generation 39

}

BibTool supports this inheritance by taking it into consideration when selecting. Similar
to the expansion of crossref fields BibTool can be asked to expand xdata fields. This
can be achieved with the boolean resource expand.xdata. This resource is off by default.
It can be turned on as in the following example:

expand.xdata = on

Summary

Option Resource command Description

expand.crossref=on Include the fields for entries references via a
crossref field.

expand.xdata=on Include the fields for entries references via an
xdata field.

-x extract.file{file} Extract the entries from an aux file.
extract.regex{expr} Discouraged backward compatibility com-

mand.
-X
regex

select{spec} Select certain entries according to a regular ex-
pression.

select.by.non.string{spec} Select certain entries according to a failing sub-
string matching.

select.by.string{spec} Select certain entries according to a sub-string
matching.

select.by.string.ignored{chars} Define the class of characters to be ignored by
the sub-string matching.

select.case.sensitive=off Turn off the case insensitive comparison.
-c select.crossrefs=on Turn on the additional selection of cross-

referenced entries.
select.fields{fields} Determine fields for -X.
select.non{spec} Select certain entries according to a failing reg-

ular expression matching.

A.10. Key Generation

The key generation facility provides a mean to uniformly replace the reference keys
by generated values. Some algorithms are hardwired, namely the generation of short
keys or long keys either unconditionally or only when they are needed. Additionally
a free formatting facility is provided. This can be used to specify your own algorithm
to generate keys. The generation of new keys can be enabled using the command line
option -f in the following way:

bibtool -f format

40 A. Reference Manual

This command adds format disjunctivly to the formatting instructions already given.
The same effect can be achieved with the resource key.format.

key.format = {format}

Some values of format have a special meaning. Fixed formatting rules are used when one
of them is in effect. The special values are described below. To illustrate their results
we consider the following BibTEX database entries:
@Unpublished { unpublished -key ,

author = "First A. U. Thor and Seco N. D. Author and Third A. Uthor
and others ",

title = "This is a rather long title of an unpublished entry which
exceeds one line",

...
}
@Article {,

author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
...

}
@BOOK{whole -collection ,

editor = "David J. Lipcoll and D. H. Lawrie and A. H. Sameh",
title = "High Speed Computer and Algorithm Organization ",
...

}
@MISC{misc -minimal ,

key = " Missilany ",
note = "This is a minimal MISC entry"

}

short If a field named key is present then its value is used. Otherwise if an author or
editor field are present, then this field is used. The short version uses last names
only. Afterwards a title or booktitle field is appended, after the fmt.name.title
separator has been inserted. Finally if all else fails then the default key default.key
is used. The result is disambiguated (cf. key.base).
To see the effect we apply BibTool to the example entries given earlier with the
command line argument -- key.format=short. This results in the following keys
(remaining lines skipped):
@Unpublished { thor. author .ea:this ,
@Article { aamport :gnats ,
@Book { lipcoll . lawrie .ea:high ,
@Misc { missilany ,

long The long version acts like the short version but incorporates initials when format-
ting names.
If BibTool is applied to the example entries given earlier with the command line
argument -- key.format=long we get the following keys:

A.10. Key Generation 41

@Unpublished { thor.fau. author .snd.ea:this ,
@Article { aamport .la:gnats ,
@Book{ lipcoll .dj. lawrie .dh.ea:high ,
@Misc{ missilany ,

new.short This version formats like short but only if the given key field is empty. This
is obsoleted by the resource preserve.keys and will be withdrawn in a future release.

If BibTool is applied to the example entries given earlier with the command line
argument -- key.format=short.need we get the following keys:
@Unpublished { unpublished -key ,
@Article { aamport :gnats ,
@Book{ whole -collection ,
@Misc{ misc -minimal ,

new.long This version formats like long but only if the given key field is empty. This is
obsoleted by the resource preserve.keys and will be withdrawn in a future release.

If BibTool is applied to the example entries given earlier with the command line
argument -- key.format=short.need we get the following keys:
@Unpublished { unpublished -key ,
@Article { aamport .la:gnats ,
@Book{ whole -collection ,
@Misc{ misc -minimal ,

empty The empty version clears the key entirely. The result does not conform to the
BibTEX syntax rules. This feature can be useful if a resource file must be used
which generates only new keys. In this case a first pass can clear the keys and the
given resource file can be applied in a second pass to generate all keys.

If BibTool is applied to the example entries given earlier with the command line
argument -- key.format=empty we get the following keys:
@Unpublished { ,
@Article { ,
@Book{ ,
@Misc{ ,

In contrast to the command line option, the resource instruction only modifies the for-
matting specification. The key generation has to be activated explicitly. This can be
done using the command line option -F as in

bibtool -F

Alternatively the Boolean resource key.generation can be used in a resource file:

key.generation = on

42 A. Reference Manual

Usually all keys are regenerated. This can have the unpleasant side-effect to invalidate
citations in old documents. For this situation the resource preserve.keys is meant. This
resource is usually off. If it is turned on then only those entries receive new keys if
they do not have a key already. This means that the input contains only a sequence of
white-space characters (which is not accepted by BibTEX) as in the following example:

@Article {,
author = {L[eslie] A. Aamport },
title = {The Gnats and Gnus Document Preparation System },
journal = {\ mbox{G-Animal ’s} Journal },
year = 1986 ,
volume = 41,
number = 7,
pages = "73+" ,
month = jul ,
note = "This is a full ARTICLE entry",

}

Even if preserve.keys is on, BibTool still changes all keys to lower case by default. This
can be suppressed by switching preserve.key.case to on (see section A.6).
When the key.format is not empty then the keys are disambiguated by appending letters
or numbers. Thus there can not occur a conflict which would arise when two entries have
the same key. The disambiguation uses the resource key.number.separator. If a key is
found (during the generation) which is already been used then the valid characters from
the value of this resource is appended. Additionally a number is added. The appearance
of the number can be controlled with the resource key.base. This resource can take the
values upper, lower, and digit. The effect can be seen in the following table:

generated key digit lower upper
key key key key
key key*1 key*a key*A
key key*2 key*b key*B
key key*3 key*c key*C
key key*4 key*d key*D

As we have seen there are options to adapt the behavior of formatting. Before we explain
the free formatting specification in section A.11 we will present the formatting options.
Those options can be activated from a resource file or with the corresponding feature to
specify resource instructions on the command line.

preserve.keys This Boolean resource determines whether existing keys should be left
unchanged when new keys are generated. The default value is off.

preserve.key.case This Boolean resource determines whether keys should be recorded
and used exactly as read as opposed to normalizing them by translating all upper-
case letters to lower case. The default value is off.

A.10. Key Generation 43

default.key The value of this resource is used if nothing else fits. The default value is
**key*.

key.base The value of this resource is used to determine the kind of formatting the
disambiguating number. Possible values are upper, lower, and digit. Uppercase
letters, lower case letters, or digits are used respectively.

key.number.separator The value of this resource is used to separate the disambiguating
number from the rest of the key. The default value is *.

key.expand.macros The value of this Boolean resource is used to indicate whether
macros should be expanded while generating a key. The default value is off.

fmt.name.title The value of this resource is used by the styles short and long to separate
names and titles. The default value is :.

fmt.title.title The value of this resource is used to separate words inside titles. The
default value is :.

fmt.name.name The value of this resource is used to separate different names (where
the BibTEX file has and) when formatting names. The default value is ..

fmt.inter.name The value of this resource is used to separate parts of multi-word names
when formatting names. The default value is -.

fmt.name.pre The value of this resource is used to separate names and first names when
formatting names. The default value is ..

fmt.et.al The value of this resource is used to format and others parts of a name list.
The default value is .ea.

fmt.word.separator The value of this resource is used as additional characters not to be
considered as word constituents. Word separators are white-space and punctuation
characters. Those can not be redefined. The default value is empty.

The key style short can be formulated in terms of the format specification given in section
A.11 as follows:

{
{ %-2n(author)
%-2n(editor)
}
{ %s($fmt.name.title) %-1T(title)
%s($fmt.name.title) %-1T(booktitle)
#
}

}
#
{ { %s($fmt.name.title) %-1T(title)

%s($fmt.name.title) %-1T(booktitle)
}

}
%s($default.key)

44 A. Reference Manual

The syntax and meaning of such format specifications is explained in section A.11.

A.10.1. Aliases for Renamed Entries

BibTool provides a means to automatically generate @Alias definitions for those entries
whoich have received a new key during the key generation. This works for a sufficiently
current BibTEX only.
The aliases can be requested with the boolean resource key.make.alias. This can be set
in a resource file file thie:

key.make.alias = on

The default is off. This means that no additional entries are created.

Summary

Option Resource command Description

preserve.keys=off Do not generate new keys if one is already
present.

preserve.key.case=on Do not translate keys to lower case when read-
ing.

default.key={key} Key used if nothing else applies.
fmt.et.al={ea} String used to abbreviate further names.
fmt.inter.name={s} String used between parts of names.
fmt.name.name={s} String used between names.
fmt.name.pre={s} String separating first and last names.
fmt.name.title={s} String used to separate names from titles.
fmt.title.title={s} String used to separate words in titles.
key.base={base} Kind of numbers or letters for disambiguating

keys.
key.expand.macros=off Turn off macro expansion for key generation.

-f key.format{fmt} Set the specification for key generation to fmt.
-F key.generation=on Turn on key generation.

key.make.alias=on Turn on creation of @Alias entries for entries
which have received a new key.

key.number.separator={s} String to be used before the disambiguating
number.

A.11. Format Specification

A.11.1. Constant Parts

The simplest component of a format is a constant string. Such strings are made up of
any character except white-space and the following ten characters

A.11. Format Specification 45

" # % ’ () , = { }

This choice of special characters is the same as the special characters of BibTEX. Since
no means is provided to include a special character into a format string we guarantee
that the resulting key string is conform to the BibTEX rules.
For example the following strings are legal constant parts of a format:

Key
the_name.of-the-@uthor-is:

Now we come to explain the meaning of the special characters. The first case consists of
the white-space characters. They are simply ignored. Thus the following format strings
are equal:3

Author Or Editor
AuthorOrEditor
A u t h o r O r E d i t o r

A.11.2. Formatting Fields

The next component of formats are made up formatting instructions which are starting
with a % character. The general idea has been inspired by formatting facilities of C.
Since there are several different types of information in a BibTEX entry we provide
several primitives for formatting. The simplest form is for instance

%N(author)

The % character is followed by a single character—here N—which indicates the way of
formatting and the name of the field to be formatted enclosed in parenthesis. The
example above requests to format the field author according to formatting rules for
names (N).
The general form is

%sign pre.post qualifier letter(field)

In this specification sign is + or -. + means that all characters will be translated to
upper case. - means that all characters will be translated to lower case. If no sign is
given, the case of the field is preserved.
pre and post are positive integers whose meaning depends on the format letter letter.
qualifier letter is a one letter specification indicating the desired formatting type op-
tionally preceded by the qualifier #. Possible values are as described in the following
list:

3Well, this is not the whole truth. Internally it makes a difference whether there is a space or not. In
the presence of spaces more memory is used. But you shouldn’t worry too much about this.

46 A. Reference Manual

p Format names according to the format specifier number post. In a list of names
at most pre names are used. If there are more names they are treated as given as
and others.

pre defaults to 2 and post defaults to 0.

See section A.11.10 for a description of how to specify name formats.

Example

author = {A. U. Thor and S. O. Meone and others }

With the above item we get the following results:

%p(author) Thor.Meone.ea
%1p(author) Thor.ea
%-2p(author) thor.meone.ea
%+1p(author) THOR.EA

n Format last names only.
In a list of names at most pre last names are used. If there are more names they
are treated as given as and others. If post is greater than 0 then at most post
characters per name are used. Otherwise the whole name is considered.

pre defaults to 2 and post defaults to 0.

This is the same as using the p format specifier with the post value of 0. The post
value of the n specifier is used as the len value of the first item of the name format
specifier. (See also section A.11.10)

Example

author = {A. U. Thor and S. O. Meone and others }

With the above item we get the following results:

%n(author) Thor.Meone.ea
%1n(author) Thor.ea
%-2n(author) thor.meone.ea
%+1n(author) THOR.EA
%.3n(author) Tho.Meo.ea

N Format names with last names and initials.
In a list of names at most pre last names are used. If there are more names they
are treated as given as and others. If post is greater than 0 then at most post
characters per name are used. Otherwise the whole name is considered.

pre defaults to 2 and post defaults to 0.

A.11. Format Specification 47

This is the same as using the p format specifier with the post value of 1. The post
value of the n specifier is used as the len value of the first item of the name format
specifier. (See also section A.11.10)

Example

author = {A. U. Thor and S. O. Meone and others }

With the above item we get the following results:

%N(author) Thor.AU.Meone.SO.ea
%1N(author) Thor.AU.ea
%-2N(author) thor.au.meone.so.ea
%+1N(author) THOR.AU.EA
%.3N(author) Tho.AU.Meo.SO.ea

d Format a number, e.g. a year.

The postth number in the field is searched. At most pre digits—counted from the
right—are used. For instance the field "june 1958" formatted with %2d results in
58.

pre defaults to a large number except in when the negative sign is present. Then
it defaults to 1.

post defaults to 1. Thus if you want to select the second number you can simply
use %.2d as format specifier.

If no number is contained in the field then this specifier fails. Thus the specifier
%0d can be used to check for a number.

Positive and negative signs make no sense in specifying translations since numbers
have no uppercase or lowercase counterparts. Thus they have a different meaning
in this context.

If the positive sign is given then the specifier does not fail at all. Instead of failing
a single 0 is used.

If the negative sign is given then the result is padded with 0 if required. In this case
the specifier does not fail at all. Even if no number is found then an appropriate
number of 0s is used.

Example

pages = {89 - -123}

48 A. Reference Manual

With the above item we get the following results:

%d(pages) 89
%1d(pages) 9
%4d(pages) 89
%-4d(pages) 0089
%-5.2d(pages) 00123
%.3d(pages) fails
%+.3d(pages) 0
%0d(pages) succeeds with empty result

D Format a number.
This format specifier acts like the d specifier except that the number is not trun-
cated. Thus a large number comes out complete and not only the last few digits.

Example

pages = {89 - -123}

With the above item we get the following results:

%D(pages) 89
%1D(pages) 89
%4D(pages) 89
%-4D(pages) 0089
%-5.2D(pages) 00123
%.3D(pages) fails
%+.3D(pages) 0
%0D(pages) 89

s Take a field as is (after translation of special characters).
At most pre characters are used.

pre defaults to a large number.

Example

author = {A. U. Thor and S. O. Meone and others }

With the above item we get the following results:

%s(author) A.-U.-Thor-and-S.-O.-Meone-and-others
%8s(author) A.-U.-Th
%-8s(author) a.-u.-th
%+8s(author) A.-U.-TH
%0s(author) succeeds with empty result

A.11. Format Specification 49

T Format sentences. Certain words are ignored.
At most pre words are used. The other words are ignored. If pre is 0 then no
artificial limit is forced. If post is positive then at most post letters of each word
are considered. Otherwise the complete words are used.
New words to be ignored can be added with the resource ignored.word.
pre defaults to 1 and post defaults to 0.

Example

title = {The Whole Title}

With the above item we get the following results:
%T(title) Whole
%2T(title) Whole-Title
%2.1T(title) W-T
%-T(title) whole
%+T(title) WHOLE

The string to be formatted according to this specification is separated into words.
To accomplish this white-space characters and punctuation characters are consid-
ered to be not part of a word but as separator. To add additional word separators
use the resource fmt.word.separator. In the following example the characters +, -,
<, =, >, *, and / are declared as additional word separators.

fmt.word.separator = "+-<=>*/"

Note that the effect of fmt.word.separator is accumulating more characters. It is not
possible to define a character not to be a word separator once it has this property.

t Format sentences. In contrast to the format letter T no words are ignored.
At most pre words are used. The other words are ignored. If pre is 0 then no
artificial limit is forced. If post is positive then at most post letters of each word
are considered. Otherwise the complete words are used.
pre defaults to 1 and post defaults to 0.

Example

title = {The Whole Title}

With the above item we get the following results:
%t(title) The
%2t(title) The-Whole
%2.1t(title) T-W
%-t(title) the
%+t(title) THE

50 A. Reference Manual

W Format word lists.
This specifier acts like T except that nothing is inserted between words.

Example

title = {The Whole Title}

With the above item we get the following results:
%W(title) Whole
%2W(title) WholeTitle
%2.1W(title) WT
%-W(title) whole
%+W(title) WHOLE

w Format word lists.
This specifier acts like t except that nothing is inserted between words.

Example

title = {The Whole Title}

With the above item we get the following results:
%w(title) The
%2w(title) TheWhole
%2.1w(title) TW
%-w(title) the
%+w(title) THE

#p Count the number of names.
If no sign is given or the sign is + then the following rules apply. If the count is
less than pre or the count is greater than post then this specifier fails. Otherwise
it succeeds without adding something to the key.
The construction and others, which indicates an unspecified number of additional
authors, counts as one single author.
If the sign is - then the specifier succeeds if and only if the specifier without this
sign fails. Thus the - acts like a negation of the condition.
If post has the value 0 than this is treated like ∞.
If a is the number of names separated by and then
%l.h #p succeeds if and only if l ≤ a ≤ h.
%-l.h #p succeeds if and only if l > a or a > h.
pre and post both defaults to 0.

Example

A.11. Format Specification 51

author = {A. U. Thor and S. O. Meone and others }

With the above item we get the following results:
%2#p(author) succeeds with empty result
%4#p(author) fails
%-4#p(author) succeeds with empty result
%3.4#p(author) succeeds with empty result
%-3.4#p(author) fails

#n Is the same as #p.
#N Is the same as #p.
#s Count the number of allowed characters.

If no sign is given or the sign is + then the following rules apply. If the count is
less than pre or the count is greater than post then this specifier fails. Otherwise
it succeeds without adding something to the key.
If the sign is - then the specifier succeeds if and only if the specifier without this
sign fails. Thus the - acts like a negation of the condition.
If post has the value 0 than this is treated like ∞.
pre and post both default to 0.
If a is the number of allowed characters then
%l.h #s succeeds if and only if l ≤ a ≤ h.
%-l.h #s succeeds if and only if l > a or a > h.

Example

title = {The Whole Title}

With the above item we get the following results:
%#s(title) succeeds with empty result
%13.13#s(title) succeeds with empty result
%10.16#s(title) succeeds with empty result
%-10.16#s(title) fails

#w Count the number of words. All words are considered as valid. The division into
words is performed after deTEXing the field.
If no sign is given or the sign is + then the following rules apply. If the count is
less than pre or the count is greater than post then this specifier fails. Otherwise
it succeeds without adding something to the key.
If the sign is - then the specifier succeeds if and only if the specifier without this
sign succeeds. Thus the - acts like a negation of the condition.
If post has the value 0 than this is treated like ∞.

52 A. Reference Manual

pre and post both default to 0.

If a is the number of words separated by white-space then
%l.h #p succeeds if and only if l ≤ a ≤ h.
%-l.h #p succeeds if and only if l > a or a > h.

Example

title = {The Whole Title}

With the above item we get the following results:
%#w(title) succeeds with empty result
%3.3#w(title) succeeds with empty result
%1.6#w(title) succeeds with empty result
%-1.6#w(title) fails

#t Is the same as #w.

#W Count the number of words. Certain words are ignored. The ignored words are
determined by the resource ignored.word. The division into words is performed
after deTEXing the field.

If no sign is given or the sign is + then the following rules apply. If the count is
less than pre or the count is greater than post then this specifier fails. Otherwise
it succeeds without adding something to the key.

If the sign is - then the specifier succeeds if and only if the specifier without this
sign fails. Thus the - acts like a negation of the condition.

If post has the value 0 than this is treated like ∞.

pre and post both default to 0.

If a is the number of words separated by white-space which are not marked to be
ignored then
%l.h #p succeeds if and only if l ≤ a ≤ h.
%-l.h #p succeeds if and only if l > a or a > h.

Example

title = {The Whole Title}

With the above item we get the following results:
%#W(title) succeeds with empty result
%2.2#W(title) succeeds with empty result
%1.6#W(title) succeeds with empty result
%-1.6#W(title) fails

#T Is the same as #W.

A.11. Format Specification 53

If some words are enclosed in brace, they are considered as one composed word. For
example, with the format %t(title), and this field:

title = "{ The Whole Title }"

In this case we obtain The-Whole-Title.
The field specification (field) selects the field of the entry to be formatted. As usual in
BibTEX the case of the letters is ignored. If the field does not exist then the formatting
fails and continues at the next alternative (see below).
But the field is not only sought in the current entry. According to the behavior of
BibTEX the special field crossref is taken into account. If a field is missing them the
entry named in the crossref field is also considered. Since this dereferencing contains
the potential danger of an infinite loop the number of dereferencing steps is restricted by
the numeric resource crossref.limit. The number of uses of the crossref field is limited
by the value of this resource. The default of this resource is 32.
Usually a value of 1 would be sufficient for BibTEX files conforming to the standard styles.
Nevertheless other applications can be imagined where a higher value is desirable.
To turn off the crossref feature complete you can set the value of crossref.limit to 0. In
this case only the fields found in the entry itself are considered.

A.11.3. Pseudo Fields

In addition to the ordinary fields of an entry there are several pseudo fields. They are
listed below.

$key This pseudo field contains the old reference key—before generating a new one. If
none has been given then the access fails.

$sortkey This pseudofield contains the string according to which the sorting is per-
formed. It defaults to the reference key.

$default.key This pseudo field contains the value of the resource default.key sim-
ilarly the resources fmt.name.title, fmt.title.title, fmt.name.name, fmt.inter.name,
fmt.name.pre, and fmt.et.al can be accessed.

$source This pseudo field contains the name of the file the entry has been read from.
If this file can not be determined, e.g. because the entry has been read from stdin,
then this pseudo field is empty.

$type This pseudo field contains the type of the entry, i.e. the string following the initial
@ of an BibTEX entry, e.g. article. It is always present.

@type This pseudo field is matched against the type of the entry. If they are identical
(ignoring cases) then the type is returned. Otherwise the access fails.
In an article item the specification %s(@Article) succeeds and returns Article
whereas %s(@Book) fails.

54 A. Reference Manual

$day This pseudo field contains the current day as a two digit number or the empty
string if this value is not available. The date and time values are determined at
the beginning of the BibTool run and does not reflect the execution time used by
BibTool.

On some systems the timing function might be missing or returning strange values.
In this case the timing fields simply return the empty string.

$month This pseudo field contains the current month as a two digit number or the empty
string if this value is not available.

$mon This pseudo field contains the current month name as a string or the empty string
if this value is not available.

$year This pseudo field contains the current year as a four digit number or the empty
string if this value is not available.

$hour This pseudo field contains the current hour as a two digit number or the empty
string if this value is not available.

$minute This pseudo field contains the current minute as a two digit number or the
empty string if this value is not available.

$second This pseudo field contains the current second as a two digit number or the
empty string if this value is not available.

$user This pseudo field contains the contents of the environment variable $USER or the
empty string if this value is not available. On UN*X systems this variable usually
contains the name of the user. This can be used to write logging information into
a field.

$hostname This pseudo field contains the contents of the environment variable $HOSTNAME
or the empty string if this value is not available.

A.11.4. Conjunctions

Conjunctions are formatting instructions evaluated in sequence. The conjunctions are
simply written by successive formatting instructions. A conjunction succeeds if every
part succeeds. The empty conjunction always succeeds.

Suppose an BibTEX entry contains fields for editor and year. Then the following
conjunction succeeds:

%-3n(editor) : %2d(year)

If the value of the editor field is "E.D. Itor" and the year field contains "1992" then
the result is itor:92.

A.11. Format Specification 55

A.11.5. If-Then-Else

Depending on the presence of a (pseudo-) field formatting instructions can be issued.
This corresponds to an if-then-else statement in a Pascal-like language. The syntax is
as follows:

(field) {then-part} {else-part}

If the access to the (pseudo-)field as described in A.11.2 succeeds then the then-part is
evaluated. Otherwise the else-part is evaluated. Both parts may be empty. Nevertheless
the braces are required.

Let us look at an example. The following construction can be used to format a field
author if it is present or print a constant string.

(author){%N(author)}{--no-author--}

A.11.6. Alternatives

Alternatives (disjunctives) are separated by the hash mark (#). The general form is

alternative1 # alternative2 # . . . # alternativen

The alternatives are evaluated from left to right. The first one that succeeds terminates
the processing of all alternatives with success. If no alternative is successful then the
whole construct fails.

An alternative can be empty. The empty alternative succeeds without any other effect.

The example given in subsection A.11.5 can be also written as

%N(author) # --no-author--

If the author field is accessible the first alternative succeeds and terminates the construct.
Otherwise the constant string is used. This constant string always succeeds.

A.11.7. Grouping

Any number of constructs can be enclosed in braces ({}) for grouping. Thus the prece-
dence of operators can be bypassed.

Coming back to our example from the previous subsection. To complicate the example
we want to append an optional title, or a constant string. This is accomplished as
follows.

{%N(author) # --no-author-- } {%T(title) # --no-title-- }

56 A. Reference Manual

The grouping allows to restrict the range of the alternative operator # in this example.
Another example shows how the alternative together with grouping can be used to share
a format specification for certain types of entries:

{%0s(@book) # %0s(@proceedings)} --book-or-proc--

The %0s specifier is used to check for the existence of a certain field without actually
adding anything to the output. Other constructs may serve for the same purpose. This
construct is applied to the pseudo fields @book and @proceedings. The access to the
pseudo field fails if requested in another type of entry. Those two checks are combined to
form a disjunction. Thus the following code—the constant in this example—is reached
only if we are in a book or in a proceedings entry. It is not reached in an article.

A.11.8. Ignored Words

Certain format specifiers act on lists of words. In this situation it can be desirable to
ignore certain words. For instance when a sort key is constructed with the title of books
it is common practice to omit certain words like articles. This is accomplished by a list
of ignored words. This list is initialized at compile time to contain articles of different
languages (If the installer has not modified it).
The resource ignored.word can be used to put additional words onto the list of ignored
words. For this purpose the new word is given as argument to the resource. Note that
there should be no space between the braces and the word. For example:

ignored.word {word}

To gain complete control over the list of ignored words you can completely overwrite the
compiled in defaults. This can be accomplished by clearing the list of ignored words.
Afterwards no word is recognized as ignored word until new words are added to this list.
This operation can be performed with the resource clear.ignored.words. In principal this
operation does not require any argument. Since this contradicts the syntactic restrictions
for resources you have to give an empty argument to this resource:

clear.ignored.words {}

A.11.9. Expanding TEX/LATEX Macros

When fields are formatted certain LATEX macros may be replaced by pure text. Each
macro not defined is simply ignored. Initially no LATEX macro is defined. The resource
tex.define can be used to define LATEX macros. The syntax is very close to LATEX. The
simplest form is the following definition.

tex.define {macro=replacement text}

A.11. Format Specification 57

This resource defines a simple macro which is replaced by the replacement text. This
replacement text may in turn contain macros.

In addition to this simple macro also macros involving arguments can be defined. As in
LATEX’s \newcommand the number of arguments is appended after the macro name.

tex.define {macro[arg]=replacement text}

The number of arguments may not exceed 9. The actual parameters are addressed by
writing #n, where n is the number of the argument.

For instance, this feature can be used to ignore certain arguments of macros.

Note that spaces between the macro head and the equality sign (=) are ignored. Any
unwanted spaces after the equality sign may have strange effects.

Usually the macro name starts with a backslash (\). If the macro name starts with
another character then this character is made active (cf. [Knu89]). This feature is es-
pecially useful for translating characters with an extended ASCII code (≥ 128) to the
appropriate TEX macros.

For instance the following definition forces the expansion of the macro \TeX to the string
TeX.

tex.define {\TeX=TeX}

Without this definition the title The \TeX{}book would result in book. With this defi-
nition the same title results in TeXbook.

Suppose you have an input file containing 8-bit characters (e.g. ISO 8859-1 encoding).
The following definition can be used to map this character into a pure ASCII string4

tex.define {ü=ue}

With the following definition the \protect macro and the corresponding braces would
be ignored when formatting field, otherwise the braces would remain.

tex.define {\protect[1]=#1}

Some useful definitions can be found in the libraries distributed with BibTool (see also
appendix C).

4To add an e is the German convention for umlaut characters.

58 A. Reference Manual

A.11.10. Name Formatting

Names are a complicated thing. BibTool tries to analyze names and “understand”
them correctly. According to the BibTEX definition a name consists of four types of
components:

• The first names are any names before the last names which start with an upper
case letter.
For instance for the name “Ludwig van Beethoven” the first name is “Ludwig”.

• The last name is the last word (or group of words) which does not belong to the
junior part.
For instance for the name “Ludwig van Beethoven” the last name is “Beethoven”.

• The von part are the names before the last name which start with lower case
letters.
For instance for the name “Ludwig van Beethoven” the von part consists of the
word “van”.

• The junior part of a name is an appendix following the last name. BibTool knows
only a small number of words that can appear in the junior part: junior, jr., senior,
sen., Esq., PhD., and roman numerals up to XXX.

Everything except the last name is optional. Each part can also consist of several words.
More on names can be found in [Lam94] and [Pat88b].
BibTool provides a means to specify how the various parts of a name should be used to
construct a string. This string can be used as part of a key with the %p format specifier
(see above).
BibTool uses a small number of name format specifiers.5 Initially most of them are unde-
fined. The name format specifier 0 is initially set to the value %*l[fmt.inter.name]. The
name format specifier 1 is initially set to the value %*l[fmt.inter.name]%*1f[fmt.inter.name].
The name format specifiers 0 and 1 are used by the formatting instructions %N and %n.
Thus you should be careful when redefining them. To help you keep an eye on these two
name format specifiers BibTool issues a warning when they are modified.
The resource new.format.type can be used to assign values to those name format specifiers:

new.format.type {17=”%f%v%l”}

This instruction sets the name format specifier number 17 to the given value. This value
is a string of characters to be used directly. There is only one construct which is not
used literally. This construct is started by a % sign optionally followed by a + or a - and
a number. Next comes one of the letters f, v, l, or j. Finally there are three optional
arguments enclosed in brackets.
Thus the general form looks as follows:

5The exact number can be changed in the configuration file before compilation. The default is 128.

A.11. Format Specification 59

%sign len.number letter [pre][mid][post]

The letter f denotes all first names. The letter l denotes all last names. The letter v
denotes all words in the von part. The letter j denotes all words in the junior part.
If sign is + then the words are translated to upper case. If sign is - then the words are
translated to lower case. If no sign is given then no conversion is performed. If the sign
is * then the translation is inherited from the calling format.
The number len can be used to specify the number of characters to be used. Each word
is truncated to at most len characters if len is greater than 0. Otherwise no truncation
is performed. Thus a value of 0 acts like ∞. Note that the length of the name format
specifiers 0 and 1 are automatically inherited from the calling format.
The fractional number number after the period denotes the number of name parts to be
taken into account. This can be used to just show the one first name if more are given.
If [mid] is given then this string is used between several words of the given part. If
none is given then the empty string is used.
If [pre] is given then this string is used before the given part, but only if the part is not
empty. If none is given then the empty string is used.
If [post] is given then this string is used after the given part, but only if the part is not
empty. If none is given then the empty string is used.
Now we can come to an example. Suppose the name field contains the value Cervantes
Saavedra, Miguel de6. This name has two last names, one first name and one word in
the von part.
We want to apply the following name format specifier

%1f[.][][.]%1v[.][][.]%3l[-]%1j

This means we want to use abbreviation of first name, von and junior part to one letter
and of three letters of the last name. Thus we will get the result M.d.Cer-Saa.
Note that the name specifier does not take care to include only allowed letters into a
key. Thus watch out and avoid special characters as white-space and comma.

A.11.11. Example

To end this section we should have a look at a complete example of key generation
specification. For this purpose we define a rule according to which the keys should be
generated:

1. If a field named bibkey is present then the value of this field should be used.
2. If the type of the entry is a book then the authors/editors are used followed by

the year separated by a colon.
6This is the author of “Don Quixote”

60 A. Reference Manual

3. If the type of the entry is an article in a journal (article) then the author, the
journal, the number, and the year should be used. Author and journal should
be separated by a colon, The journal should be abbreviated with the initials and
separated from number and year by a period.

4. If the type of the entry is a volume of conference proceedings (proceedings) then
the editor, the first 5 initials of the title and the year should be used. The editor
should be followed by a colon and the year preceded by a period.

5. If the type of the entry is a contribution in conference proceedings then the author,
the initials of the book title and the year should be used.

6. Otherwise the first three letters of the type, the author and the year should be
used. If no author is given then the initials of the title should be used instead—but
at most 6 characters.

The names should include up to two names abbreviated to four letters and should be
translated to lower case. If an information is missing then the respective part together
with the following separator should be omitted.

The disambiguation should be done by appending upper case letters without a preceding
string. If everything else fails three question marks should be inserted as key.

To implement this scheme we write the following specification into a resource file:
key.expand.macros = on
key.base = upper
key.number.separator = {}
key.format =
{

%s(bibkey)
#

%0w(@book)
{ %-2 .4n(author): # %-2 .4n(editor): # }
{ %4d(year) # }

#
%0w(@article)
{ %-2 .4n(author): # }
{ %-.1W(journal). # }
{ %4d(year) # }

#
%0w(@proceedings)
{ %-2 .4n(editor): # }
{ %-.1W(title). # %-.1W(booktitle). # }
{ %4d(year) # }

#
%0w(@inproceedings)
{ %-2 .4n(author): # }
{ %-.1W(booktitle). # }
{ %4d(year) # }

#
%3s($type)-
{ %-2 .4n(author):
%-6 .1W(title).
}
{%4d(year) # }

#
%3s($type)-

A.12. Field Manipulation 61

%4d(year)
???

}

Since each part has been explained before we just need some overall remarks. I prefer to
use the backtracking-based disjunctions instead of nested if-then-else constructs because
they save some braces. They can be read as a switch statement, or even better as a cond
statement in Lisp. This means they describe cases. The first successful case terminates
the evaluation of the whole cascade.

The constructions like %0w(@book) are use to distinguish the different types. This con-
struction does not produce any output. It just succeeds or fails depending on the type
of the current entry. The %0w could also be replaced by other specifiers which serve the
same purpose.

The constructions like {%4d(year) # } always succeed. The hash sign (#) catches the
failure and inserts the second alternative—which happens to be empty—if the requested
field does not exist.

Summary

Option Resource command Description

clear.ignored.words{} Forget all words from the list of ignored words.
new.format.type{n=spec} Define a new way to format names.
ignored.word{s} Add a word to the list of ignored words.
tex.define{macro=text} Expand the TEX macro macro to text.
tex.define{macro[n]=text} Expand the TEX macro with arguments.

A.12. Field Manipulation

This sections contains some operations to manipulate fields in some kind.

A.12.1. Adding Fields

Certain fields can be added. This feature can be used for instance to update time stamps.
For this purpose it is important to know that deletion is done before addition. It is also
important to know that the newly added entries are not rewritten (see next section)
even though rewrite rules are applicable. The resource add.field is provided to perform
this operation.

add.field {field=value}

62 A. Reference Manual

This instruction replaces the contents of the field field by value in each entry. If this field
does not exist already then it is added first. The additions are applied in the sequence
they are given.
value can contain formatting instructions already introduced in the section A.11.2 about
“Formatting Fields” on page 45.
Suppose a time stamp is stored in the field time. With these resources the update of a
time-stamp can be achieved using the resource instructions

add.field {time=”June 13, 2000”}

If you want to update all time fields to contain the current date the following instruction
can be used. It makes use of the pseudo fields (see page 53).

add.field {time=”%s($mon) %s($day), %s($year)”}

If you want to strip the month to three leading letters and the year to two trailing digits
this can be achieved with the following instruction:

add.field {time=”%3s($mon) %s($day), %2d($year)”}

A.12.2. Deleting Fields

Certain fields can be deleted. The resource delete.field is provided to perform this oper-
ation.
The following instruction deletes all fields named field:

delete.field {field}

Several instructions of this type can be used to delete several fields.

A.12.3. Keeping Fields

The reverse to the specification of fields to be deleted is the specification of fields to
be kept. Then all fields which are not declared to be kept are deleted. The resource
keep.field allows such a specification.
In the simplest form you can specify the name of a field to be kept. This is shown in
the following example.

keep.field {field}

Several instructions with the resource keep.field can be given. Then all fields which are
not specified to be kept are deleted.

A.12. Field Manipulation 63

Note that in the extreme case all fields are deleted and an empty entry containing just
the key remains.

Next you can add a condition

keep.field {field if fieldc = ”pattern”}

The condition follows the key word if. It consists of the comparison of a field – or
pseudo-field – with a pattern. The pattern is a regular expression with which the field
is matched. The matching is perfomed case-insensitiv.

As simplification you can specify several fields to be kept in one rule. For this purpose
you enclose the field names in braces and separate them with white-space. This is
illustrated in the following resources:

keep.field {{field1 . . . fieldn}}
keep.field {{field1 . . . fieldn} if fieldc = ”pattern”}

The forms of the arguments given above require to list the fields to be given explicitly.
In addition to these forms you can specify the star (*) as field name. If the special field
name * is encountered then this is interpreted as arbitrary field name.

keep.field {*}
keep.field {* if fieldc = ”pattern”}

The first form is rather useless since it means that all fields should be kept. This nullifies
any other rule to keep a field.

The second form can be used to express that all fields should be kept if the record
satisfies the given condition.

The libraries keep bibtex.rsc and keep biblatex.rsc contain keep.field resources contain
declarations to keep the fields in the record types defined in the standard styles of
BibTEX and BibLATEX respectively.

A.12.4. Renaming Fields

Fields can be renamed during the field rewriting phase. This takes immediate effect such
that rewriting rules can fire after the renaming has been performed.

The resource rename.field can be used to perform this operation. This resource can be
used in the following forms:

rename.field {old=new}
rename.field {old=new if field=pattern}

64 A. Reference Manual

The parameters old and new are the old and the new name of the field. The values are
(unquoted) symbols. They are treated case in-sensitive. The final appearance in the
output is determined in the printing phase.

In the second form a selector is added. field is the name of a field or pseudo field (see
section A.11.3). The value of this field is gathered from the current record and matched
against the pattern given as pattern. pattern is a string value enclosed in double quotes.
The matching succeeds if the pattern matches a substring of the value of the field. If the
record does not have such a field then the renaming is not applied.

The case-sensitivity of the matching is controlled by the resource rewrite.case.sensitive.

The equal signs in the parameter of the resource are optional. They can omitted or
written as #.

Note that it is up to you to ensure that double appearing field names are avoided. They
would lead to illegal records in the BibTEX output.

Note that the selecting pattern is rather restricted at the moment. This might change
in the future.

The following examples illustrate the function of the resource rename.field.

The following rule fixes a typo in the field name.

rename.field {autor = author}

The following rule renames the field title to booktitle for books. All other record
types are unaffected.

rename.field {title = booktitle if $type = ”book”}

A.12.5. Field Rewriting

Field modifications can be used to optimize or normalize the appearance of a BibTEX
data base. The powerful facility of regular expression matching is used for this purpose
as we have already seen in section 1.2.3.

The resource rewrite.rule can be used to specify rewrite rules. The general form is as
follows:

rewrite.rule {field1 . . . fieldn # pattern # replacement text}

field1 . . . fieldn is a list of field names. The rewrite rule is only applied to those fields
which have one of those names. If no field name is given then the rewrite rule is applied
to all fields.

rewrite.rule {pattern # replacement text}

A.12. Field Manipulation 65

Next there is the separator ’#’. This separator is optional. It can also be the equality
sign ’=’.

pattern is a regular expression enclosed in double quotes (”). This pattern is matched
against sub-strings of the field value—including the delimiters. If a match is found
then the matching string is replaced by the replacement text or the field deleted if no
replacement text is given.

replacement text is the string to be inserted for the matching sistering of the field value.
The backslash ’\’ is used as escape character. ’\n’ is replaced by the nth matching group
of pattern. n is a single digit (1–9). Otherwise the character following the backslash is
inserted.7 Thus it is possible to have double quotes inside the replacement text.

Other specials are

\$ which is replaced by the key of the current entry.

\@ which is replaced by the type of the current entry.

If no replacement text is given then the whole field is deleted. In fact the instruction
delete.field is only an alias for a corresponding rewrite rule with an empty replacement
text. This behavior is illustrated in the following abstract examples:

rewrite.rule {field # pattern}
rewrite.rule {pattern}

More concrete, the rewrite rule

rewrite.rule { time # ”ˆ{}$” }

deletes the time field if the value of the field is empty and enclosed in curly braces. This
is checked with the anchored regular expression ˆ{}$. The hat ˆ matches the beginning
of the value and the dollar $ matches its end. Since nothing is in between—except the
field delimiters—the rule is applied only to time fields with empty contents.

This can be generalized to the following rewrite rule which deletes all empty fields using
the same mechanism and just omitting the specification of a field name:

rewrite.rule { ”ˆ{}$” }

Note that for a similar kind of rule for double quotes as field delimiters you need to
quote these characters with backslashes:

rewrite.rule { ”ˆ\”\”$” }

7Future releases may use backslash followed by letters for special purposes. It is not safe to rely on
escaping letters.

66 A. Reference Manual

The replacement text may contain field formatting instructions as described in sec-
tion A.11.2 on page 45. These field formatting instructions are replaced by their re-
spective values. Thus we could exploit again the time stamp example from above. The
following rewrite rule will update an existing time stamp without adding one if none is
present:

rewrite.rule { time ”.*” = ”%3s($mon) %s($day), %2d($year)” }

The pattern .* matches any sequence of arbitrary characters. Thus the old contents of
the field is a match. In this example the value is not reused in the replacement text.
Thus the old contents is completely replaced by the new one.
Usually the matching is done case insensitive. This means that any upper case letter
matches its lower counterpart and vice versa. This behavior is controlled by the Boolean
resource rewrite.case.sensitive which is on by default. Changing this variable influences
only rewrite rules specified later.

rewrite.case.sensitive = off

A problem occurs e.g. when a string is replaced by a string containing the original one.
To avoid infinite recursion in such cases the numeric resource rewrite.limit controls the
number of applications of each rewrite rule. If the number given in rewrite.limit is not
negative and this limit is exceeded then a warning is printed and further applications
of this rule are stopped. A negative value of the resource rewrite.limit indicates that no
limitation should be used.
Next we will investigate some concrete examples. Note that in these examples the
character ’␣’ denotes a single space. It is used to highlight places where spaces have to
be used which would be hard to recognize otherwise.

• Empty entries are composed of delimiters – either double quotes or curly braces
which enclose an arbitrary number of spaces. If we want to delete empty entries
we can use the following two rules.

rewrite.rule { "ˆ\"␣*\"$" }
rewrite.rule { "ˆ{␣*}$" }

The caret ’ˆ’ denotes the beginning of the whole string and the dollar is its end.
The star is an operator which says that an arbitrary number of the preceding
regular expression – i.e. the space – can occur at this point.

• Ranges of pages should usually be composed of numbers separated by an n-dash
(--). The next example shows how the pages field can be normalized. Spaces are
deleted and a single minus sign is replaced by a double minus.

rewrite.rule { pages # "\([0-9]+\)␣*-␣*\([0-9]+\)" = "\1--\2" }

A.12. Field Manipulation 67

• Field rewriting may be used to remove LATEX commands. This example shows
how to remove from titles a \protect macro together with the braces, in case the
delimiter is a double quote.

rewrite.rule {title # "ˆ\"␣*\\␣*protect␣*{\(.*\)}\"$" = "\"\1\"" }

A.12.6. Field Ordering

Fields can be reordered within an entry. This feature is controlled by the presence of
a specification for the order to use. The order is specified with the resource sort.order.
The general form is as follows:

sort.order { entry = field1 # field2 # ... }

entry is the name of an entry like book. The fields are an arbitrary number of field
names like author. This specification says that field1 should precede field2 etc. Fields
which are not in this list are arranged after the specified ones. The are left in the same
order as they appear in the entry.

Another possibility is to specify the entry *. Such a sorting order is applicable to any
kind of entry. If no specific sort order is found then this general order is used if one has
been specified.

Any sorting order is added to a list of sorting orders if it has not been defined before. If
a sorting order is specified again, the old one is simply overwritten.

Consider the following part of a resource file:

sort.order {* = author # title}
sort.order {misc = author # title # howpublished # year # month # note}

This means that the author field goes before the title field in any entry type. For the
misc entries additional specifications are made.

The library sort fld.rsc contains a sample sorting order for the standard entry types.

68 A. Reference Manual

Summary

Option Resource command Description

add.field{field=value} Add a new field to each entry.
delete.field{field} Delete the named field from all entries.
rename.field{old=new} Rename a field.
rename.field{old=new if field=pat-
tern}

Rename a field if the record satisfies a certain
condition.

rewrite.case.sensitive=off Turn off the case comparison during field
rewriting.

rewrite.rule{fields#pattern#text} Replace in all given fields the pattern by the
replacement text.

sort.order={entry=f#. . . #f} Specify a preference order for fields in a given
entry.

A.13. Semantic Checks

Semantic checks can be enabled in addition to the syntactic checks performed during
parsing.

A.13.1. Finding Double Entries

When merging several bibliographic data bases a common problem is the occurrence of
doubled entries in the resulting data base. When searching for double entries several
problems arise. Which entries should be considered equal and what should happen to
double entries.
The first question is answered as follows. Two entries are considered equal if their sort
key is identical. The condition of identical sort keys allows the user to specify which
criteria should be used when comparing entries. This can be achieved with the resource
sort.format (see section A.7).
It remains the question what to do with the doubles. Usually it is not desirable to keep
double entries in one data base, so only one entry found is kept. The others are printed
as comments, i.e. the initial “@” is replaced by “###”. Thus all information is still
present but inactive in the BibTEX file. However, further processing with BibTool will
remove these entries if pass.comments is off, which is the default.
Sometimes it is not desirable to include deleted entries in the output – not even as
comments. In this case the default behavior can be changed with the help of the Boolean
resource print.deleted.entries. If this resource is off then deleted entries are suppressed
completely.
The prefix for deleted entries is stored in the resource print.deleted.prefix which defaults
to “###”. Thus it can be redefined. However note that you should avoid using a string
ending in an at sign @ since this would undo the effect of deleting an entry.

A.13. Semantic Checks 69

The Boolean resource check.double.delete can be used to delete double entries completely.
For this purpose it has to be turned off as in:

check.double.delete = on

The resource check.double can be used to turn on the checking of doubles. This feature
is turned off initially.

check.double = on

Checking of doubles can also be turned on with the command line option -d:

bibtool -d

A.13.2. Non-unique Fields

Double entries are identified by the sort format. Another check which can be specified
is that certain fields are unique. Examples are the reference key or a DOI number.
The resource unique.field can be used to specify unique constraints for fields. Each
invocation of this resource adds another field and enables the respective checks.

unique.field {field}

The argument is the name of a field or pseudo-field. The pseudo-fields —key|and|sortkey—
are supported in this context. The pseudo-field —key|containsthereferencekey.Thepseudo−
field|sortkey— contains the formatted sort key. The sort key is constructed according
to the contents of the resource sort.format – even if no sorting is requested. If no sort
format is specified then the value of —sortkey|containsthe|key—.
Note that this resource produces messages only. Differing from check.double the identified
records are not marked or deleted.

A.13.3. Regular Expression Checks

The regular expressions (see section A.8) which are used to rewrite fields (see section
A.12.5) can also be used to perform semantic checks on fields. For this purpose the
resources check.rule, check.warning.rule, and check.error.rule are provided. The syntax of
these resources is the same as for rewrite.rule.

check.rule { field # pattern # message }
check.warning.rule { field # pattern # message }
check.error.rule { field # pattern # message }

Again field and message is optional. The separator # can also be written as equality
sign (=) or omitted.

70 A. Reference Manual

Each field is processed as follows. Each check.rule is tried in turn until one rule is found
where field (if given) is identical to the field name and pattern matches a sub-string of
the field value. If such a rule is found then the message is written to the error stream. If
no message is given then nothing is printed and processing of the current field is ended.

message is treated like the replacement text in rewrite.rule, Thus the special character
combinations described in section A.12.5 are expanded.

The variants check.warning.rule and check.error.rule contain an additional indication as
warning or error respectively.

Usually the matching is not done case sensitive. This means that any upper case letter
matches its lower counterpart and vice versa. This behavior is controlled by the Boolean
resource check.case.sensitive which is ON by default. Changing this variable influences
only rewrite rules as described in section A.12.5.

check.case.sensitive = off

Consider the following example. We want to check that the year field contains only years
from 1800 to 2029. Additionally we want to allow two digit abbreviations.

check.rule { year "ˆ[\"{]1[89][0-9][0-9][\"}]$" }
check.rule { year "ˆ[\"{]20[0-2][0-9][\"}]$" }
check.rule { year "ˆ[\"{][0-9][0-9][\"}]$" }
check.rule { year "" "\@ \$: Year has to be a suitable number" }

The first rule matches any number starting with 1 followed by 8 or 9 and finally two
digits. The whole number may be enclosed in double quotes or curly braces.8 The hat
at the beginning and the dollar at the end force that the pattern matches against the
whole field value only.

The second rule applies for the years starting with 200, 201, or 202. The following
character is an arbitrary digit.

The next rule covers years consisting of two digits. The first three rules produce no error
message but end the search for further matches. Thus is something suitable is found
then one of the first rules finds it.

Otherwise we have to produce an error message. This is done with the third rule. The
empty pattern matches against any value of the year field. This rule is only applied if
the preceding rules do not match. In this case we print an error message. \@ is replaced
by the current type and \$ by the current key.

8In fact the regular expression allows also strings starting with a quote and ending in a curly brace.
But this syntactical nonsense is ruled out by the parser already.

A.14. Strings – also called Macros 71

Summary

Option Resource command Description

check.case.sensitive=off Perform semantic checks case sensitive.
-d check.double=on Find and mark or delete entries with identical

sort keys.
check.double.delete=on Delete double entries instead of deactivating

them.
check.rule{field#pattern#msg} If the value of field matches pattern then print

the given message.

A.14. Strings – also called Macros

Strings in BibTEX files play an important role when managing large bibliographic data
bases. Thus the deserve special treatment. If the resource macro.file is defined then the
macros are written to this file. The argument is a file name as in

macro.file {macro/file/name}

Note that the reverse operation to string export namely the import of strings does not
deserve special treatment. You can simply give the macro file as one of the input files—
preferably before any input file that makes use of one of the macros contained therein.
The Boolean resource print.all.strings indicates if all macros defined in the BibTEX file
should be printed or only those macros actually used.

print.all.strings = on

The appearance of string names is controlled by the resource symbol.type (see 28).
Strings can be expanded when printing entries. This feature of BibTool is controlled
by the resource expand.macros as in

expand.macros = on

The effect is that all known strings in normal entries are replaced by their values. If the
values are not defined at the time of expansion then the macro name remains untouched.
As a side effect strings concatenations are simplified. Imagine the following BibTEX file.

@string { WGA = " World Gnus Almanac " }

@Book{ almanac -66,
title = 1967 # WGA ,
month = "1˜" # jan

}

72 A. Reference Manual

If BibTool is applied with expand.macros turned on this results in the following output
– if the default settings are used for every other resource.

@STRING {wga = " World Gnus Almanac " }

@Book { almanac -66,
title = {1967 World Gnus Almanac },
month = {1˜} # jan

}

The macro WGA has been expanded and merged with 1967. Note that the string jan has
not been expanded since the value should be defined in a BibTEX style file (.bst).

When macros are expanded the delimiters of entries are normalized, i.e. only one style
is used. In this example braces have been used. The alternative would be to use double
quotes. This behavior is controlled by the resource print.braces. If this resource is on
then braces are used otherwise double quotes are taken. It can be changed like in

print.braces = off

The delimiters of the whole entry are recommended to be braces. For compatibility with
Scribe it is also allowed that parentheses are used for those delimiters. This behavior
can be achieved with the Boolean resource print.parentheses. Initially this resource is off.
It can be set like in the following instruction:

print.parentheses = on

Summary

Option Resource command Description

-m file macro.file={file} Write the macro definitions to the file file.
print.all.strings=off Print only those macro definitions which are

used instead of all.
expand.macros=on Turn on macro (string) expansion in fields.
print.braces=off Switch to the use of quotes for expanded

macros instead of braces.
print.parentheses=on Enclose the whole entry in parentheses instead

of braces.

A.15. Statistics

Some information can be obtained at the end of a BibTool run. The number of BibTEX
items read and written is printed. To enable this feature the resources count.all and
count.used are provided.

A.16. BibTEX1.0 Support 73

count.all = on

count.all indicates that all known types of BibTEX items should be listed.

count.used = on

count.used forces only those types of BibTEX items to be listed which have been found
in the input files.

Summary

Option Resource command Description

-# count.all=on Print statistics about all known entry types.
-@ count.used=on Print statistics about the used entry types

only.

A.16. BibTEX1.0 Support

BibTool supports already some of the feature proposed for BibTEX1.0.

A.16.1. Including Bibliographies

The bibliography file may contain an instruction of the following form:

@include {abc.bib}

Such an entry is stored in the database and printed when requested. Nevertheless the
resource apply.include can be used to control this behavior.

A.16.2. Aliases

The bibliography file may contain an instruction of the following form:

@alias {abc=def}

This means that the key abc is treated as an alias for the key def. Usually this alias
is stored as alias in the database. For old BibTEX files it may be desirable to eliminate
aliases and introduce copies of records instead. Nevertheless the resource apply.alias can
be used to control this behavior.

74 A. Reference Manual

A.16.3. Modifications

The bibliography file may contain an instruction of the following form:

@modify {key ,
abc = {def}

}

This modification is stored in the database without being applied. Nevertheless the
resource apply.modify can be used to control this behavior.

Summary

Option Resource command Description

apply.alias=on Expand the aliased entries in the database.
apply.include=on Include the entries contained in the bibliogra-

phy file given in @include.
apply.modify=on apply the modifies in the database.

B. Limitations

B.1. Limits of BibTool

BibTool has been written with dynamic memory management wherever possible. Thus
BibTool should be limited by the memory available only. Especially the limitation on
the field length which is present in BibTEX 0.99 is not present in BibTool.
BibTEX needs a special order when cross-referenced entries are used. This limitation has
also been released in BibTool.

B.2. Bugs and Problems

Problems currently known are the following ones. They are not considered to be bugs.
• The referencing feature of BibTEX is not supported. \cite macros can be con-

tained in fields (e.g. notes). Such things can be confused.
• The memory management uses dynamic memory. This memory is reused but not

returned to the operating system. Thus BibTool may run out of memory even if
a more elaborated memory management may find free memory. This is a design
decision and I don’t think that I will change it.

• The TEX reading apparatus is only imitated to a certain limit. But this should be
enough for most applications to produce satisfactory results.

• In several modules ASCII encoding is assumed. I do not know to which extend
this influences the functionality since I don’t have access to non-ASCII machines.

• Macro expansion uses a dynamic array which can turn out to be too short. This
will be corrected as soon as I have an example where this bug shows up.

The distribution of BibTool also contains a file named ToDo. If you are interested in
more detailed descriptions of possible problems, limitations, and ideas for improvements
in further releases then you can have a look at the contents of this file.

75

C. Sample Resource Files

Sample resource files are included in the distribution of BibTool in the directory lib.
Only some of them are reproduced in this section.

C.1. The Default Settings

The following list shows the defaults for all resource instructions.

apply.alias = off
apply.include = off
apply.modify = off
bibtex.env.name = " BIBINPUTS "
check.case.sensitive = on
check.double = off
check.double.delete = off
count.all = off
count.used = off
crossref.limit = 32
default.key = "** key *"
dir.file.separator = "/"
env.separator = ":"
expand.macros = on
fmt.et.al = ".ea"
fmt.inter.name = "-"
fmt.name.name = "."
fmt.name.pre = "."
fmt.name.title = ":"
fmt.title.title = "-"
ignored.word = "{a}"
ignored.word = "{a}n"
ignored.word = "the"
ignored.word = "le"
ignored.word = "les"
ignored.word = "la"
ignored.word = "{} un"
ignored.word = "{} une"
ignored.word = "{} el"
ignored.word = "{} il"
ignored.word = "der"
ignored.word = "die"
ignored.word = "das"
ignored.word = "{} ein"
ignored.word = "{} eine"
key.base = lower
key.expand.macros = on
key.format = short
key.generation = off

77

78 C. Sample Resource Files

key.make.alias = off
key.number.separator = "*"
new.entry.type = "{} Article "
new.entry.type = "Book"
new.entry.type = " Booklet "
new.entry.type = " Conference "
new.entry.type = "{} InBook "
new.entry.type = "{} InCollection "
new.entry.type = "{} InProceedings "
new.entry.type = " Manual "
new.entry.type = " MastersThesis "
new.entry.type = "Misc"
new.entry.type = " PhDThesis "
new.entry.type = " Proceedings "
new.entry.type = " TechReport "
new.entry.type = "{} Unpublished "
preserve.keys = off
preserve.key.case = off
print.align = 18
print.align.string = 18
print.align.preamble = 11
print.align.comment = 10
print.align.key = 18
print.braces = on
print.comma.at.end = on
print.all.strings = on
print.deleted.prefix = "\#\#\#"
print.deleted.entries = on
print.entry.types = " pisnmac "
print.equal.right = on
print.indent = 2
print.line.length = 77
print.newline = 1
print.parentheses = off
print.terminal.comma = off
print.use.tab = on
print.wide.equal = off
rewrite.case.sensitive = on
rewrite.limit = 512
quiet = off
select.case.sensitive = off
select.crossrefs = off
select.fields = "\ $key"
sort = off
sort.cased = off
sort.format = "\%s(\ $key)"\ index {s@ \%s}
sort.macros = on
sort.reverse = off
suppress.initial.newline = off
symbol.type = lower
verbose = off

C.2. BibLATEX Support

The resource file biblatex contains various definitions for BibLATEX.

Entry types for BibLATEX

C.2. BibLATEX Support 79

new.entry.type { Article }
new.entry.type {Book}
new.entry.type { MVBook }
new.entry.type { InBook }
new.entry.type { BookInBook }
new.entry.type { SuppBook }
new.entry.type { Booklet }
new.entry.type { Collection }
new.entry.type { MVCollection }
new.entry.type { InCollection }
new.entry.type { SuppCollection }
new.entry.type { Manual }
new.entry.type {Misc}
new.entry.type { Online }
new.entry.type { Patent }
new.entry.type { Periodical }
new.entry.type { SuppPeriodical }
new.entry.type { Proceedings }
new.entry.type { MVProceedings }
new.entry.type { Reference }
new.entry.type { MVReference }
new.entry.type { Inreference }
new.entry.type { Report }
new.entry.type {Set}
new.entry.type { Thesis }
new.entry.type { Unpublished }
new.entry.type { Cdata }
new.entry.type { CustomA }
new.entry.type { CustomB }
new.entry.type { CustomC }
new.entry.type { CustomD }
new.entry.type { CustomE }
new.entry.type { CustomF }
new.entry.type { Conference }
new.entry.type { Electronic }
new.entry.type { MasterThesis }
new.entry.type { PhdThesis }
new.entry.type { TechReport }
new.entry.type {WWW}
new.entry.type { Artwork }
new.entry.type { Audio }
new.entry.type { BibNote }
new.entry.type { Commentary }
new.entry.type { Image }
new.entry.type { Jurisdiction }
new.entry.type { Legislation }
new.entry.type { Legal }
new.entry.type { Letter }
new.entry.type { Movie }
new.entry.type { Music }
new.entry.type { Performance }
new.entry.type { Review }
new.entry.type { Software }
new.entry.type { Standard }
new.entry.type { Video }
new.entry.type { XData }

Field capitalization for BibLATEX

80 C. Sample Resource Files

% special fields
new.field.type { entryset = EntrySet }
new.field.type { entrysubtype = EntrySubtype }
new.field.type { execute = Execute }
new.field.type { hyphenation = Hyphenation }
new.field.type { keywords = Keywords }
new.field.type { label = Label }
new.field.type { options = Options }
new.field.type { presort = Presort }
new.field.type { shorthand = Shorthand }
new.field.type { sortkey = SortKey }
new.field.type { sortname = SortName }
new.field.type { sorttitle = SortTitle }
new.field.type { sortyear = SortYear }
new.field.type { crossref = CrossRef }
new.field.type { xdata = XData }
new.field.type { xref = XRef }
% data fields
new.field.type { abstract = Abstract }
new.field.type { addendum = Addendum }
new.field.type { address = Address }
new.field.type { afterword = Afterword }
new.field.type { annotation = Annotation }
new.field.type { annote = Annote }
new.field.type { annotator = Annotator }
new.field.type { author = Author }
new.field.type { authortype = AuthorType }
new.field.type { bookauthor = BookAuthor }
new.field.type { booksubtitle = BookSubtitle }
new.field.type { booktitle = BookTitle }
new.field.type { booktitleaddon = BookTitleAddOn }
new.field.type { chapter = Chapter }
new.field.type { commentator = Commentator }
new.field.type { date = Date }
new.field.type { doi = DOI }
new.field.type { edition = Edition }
new.field.type { editor = Editor }
new.field.type { editora = EditorA }
new.field.type { editorb = EditorB }
new.field.type { editorc = EditorC }
new.field.type { editortype = EditorType }
new.field.type { editoratype = EditorAType }
new.field.type { editorbtype = EditorBType }
new.field.type { editorctype = EditorCType }
new.field.type { eid = EID }
new.field.type { eprint = EPrint }
new.field.type { eprintclass = EPrintClass }
new.field.type { eprinttype = EPrintType }
new.field.type { eventdate = EventDate }
new.field.type { eventtitle = EventTitle }
new.field.type { file = File }
new.field.type { foreword = Foreword }
new.field.type { gender = Gender }
new.field.type { howpublished = HowPublished }
new.field.type { indexsorttitle = IndexSortTitle }
new.field.type { indextitle = IndexTitle }
new.field.type { institution = Institution }
new.field.type { introduction = Introduction }
new.field.type { isan = ISAN }
new.field.type { isbn = ISBN }
new.field.type { ismn = ISMN }

C.2. BibLATEX Support 81

new.field.type { isrn = ISRN }
new.field.type { issn = ISSN }
new.field.type { issue = Issue }
new.field.type { issuetitle = IssueTitle }
new.field.type { issuesubtitle = IssueSubtitle }
new.field.type { iswc = ISWC }
new.field.type { journal = Journal }
new.field.type { journaltitle = JournalTitle }
new.field.type { journalsubtitle = JournalSubtitle }
new.field.type { language = Language }
new.field.type { library = Library }
new.field.type { location = Location }
new.field.type { bookpagination = BookPagination }
new.field.type { mainsubtitle = MainSubtitle }
new.field.type { maintitle = MainTitle }
new.field.type { maintitleaddon = MainTitleAddOn }
new.field.type { month = Month }
new.field.type { nameaddon = NameAddOn }
new.field.type { note = Note }
new.field.type { number = Number }
new.field.type { organization = Organization }
new.field.type { origlanguage = OrigLanguage }
new.field.type { origlocation = OrigLocation }
new.field.type { origpublisher = OrigPublisher }
new.field.type { origtitle = OrigTitle }
new.field.type { origdate = OrigDate }
new.field.type { pages = Pages }
new.field.type { pagetotal = PageTotal }
new.field.type { pagination = Pagination }
new.field.type { part = Part }
new.field.type { pdf = PDF }
new.field.type { pubstate = PubState }
new.field.type { reprinttitle = ReprintTitle }
new.field.type { holder = Holder }
new.field.type { publisher = Publisher }
new.field.type { school = School }
new.field.type { series = Series }
new.field.type { shortauthor = ShortAuthor }
new.field.type { shorteditor = ShortEditor }
new.field.type { shorthandintro = ShorthandIntro }
new.field.type { shortjournal = ShortJournal }
new.field.type { shortseries = ShortSeries }
new.field.type { shorttitle = ShortTitle }
new.field.type { subtitle = Subtitle }
new.field.type { title = Title }
new.field.type { titleaddon = TitleAddOn }
new.field.type { translator = Translator }
new.field.type { type = Type }
new.field.type { url = URL }
new.field.type { urldate = URLDate }
new.field.type { venue = Venue }
new.field.type { version = Version }
new.field.type { volume = Volume }
new.field.type { volumes = Volumes }
new.field.type { year = Year }
% aliases
new.field.type { archiveprefix = ArchivePrefix }
new.field.type { primaryclass = PrimaryClass }
% custom fields
new.field.type { namea = NameA }
new.field.type { nameb = NameB }
new.field.type { namec = NameC }

82 C. Sample Resource Files

new.field.type { nameatype = NameAType }
new.field.type { namebtype = NameBType }
new.field.type { namectype = NameCType }
new.field.type { lista = ListA }
new.field.type { listb = ListB }
new.field.type { listc = ListC }
new.field.type { listd = ListD }
new.field.type { liste = ListE }
new.field.type { listf = ListF }
new.field.type { usera = UserA }
new.field.type { userb = UserB }
new.field.type { userc = UserC }
new.field.type { userd = UserD }
new.field.type { usere = UserE }
new.field.type { userf = UserF }
new.field.type { verba = VerbA }
new.field.type { verbb = VerbB }
new.field.type { verbc = VerbC }

Cross-reference mappings for BibLATEX

crossref.map {{ inbook bookinbook suppbook } bookauthor =
{ mvbook book} author

}
crossref.map {{ book inbook bookinbook suppbook } maintitle =

mvbook title
}
crossref.map {{ book inbook bookinbook suppbook } mainsubtitle =

mvbook subtitle
}
crossref.map {{ book inbook bookinbook suppbook } maintitleaddon =

mvbook titleaddon
}
crossref.map {{ collection reference incollection inreference suppollection }

maintitle =
{ mvcollection mvreference } title

}
crossref.map {{ collection reference incollection inreference suppollection }

mainsubtitle =
{ mvcollection mvreference } subtitle

}
crossref.map {{ collection reference incollection inreference suppollection }

maintitleaddon =
{ mvcollection mvreference } titleaddon

}
crossref.map {{ proceedings inproceedings }

maintitle =
mvproceedings title

}
crossref.map {{ proceedings inproceedings }

mainsubtitle =
mvproceedings subtitle

}
crossref.map {{ proceedings inproceedings }

maintitleaddon =
mvproceedings titleaddon

}
crossref.map {{ inbook bookinbook suppbook }

booktitle =
book title

C.3. Useful Translations 83

}
crossref.map {{ inbook bookinbook suppbook }

booksubtitle =
book subtitle

}
crossref.map {{ inbook bookinbook suppbook }

booktitleaddon =
book titleaddon

}
crossref.map {{ incollection inreference suppollection }

booktitle =
{ collection reference } title

}
crossref.map {{ incollection inreference suppollection }

booksubtitle =
{ collection reference } subtitle

}
crossref.map {{ incollection inreference suppollection }

booktitleaddon =
{ collection reference } titleaddon

}
crossref.map { inproceedings booktitle =

proceedings title
}
crossref.map { inproceedings booksubtitle =

proceedings subtitle
}
crossref.map { inproceedings booktitleaddon =

proceedings titleaddon
}

crossref.map {{ article subperiodical } journaltitle =
periodical } title

}
crossref.map {{ article subperiodical } journalsubtitle =

periodical subtitle
}

C.3. Useful Translations

The resource file tex_def translates international characters into plain text representa-
tions. Especially the German umlaut sequences are translated. For instance the letter
Ä which is written as {\"A} in a BibTEX file is translated to Ae.1

Additionally some logos are defined.
tex.define {\"[1]=#1 e}
tex.define {\ ss=ss}
tex.define {\ AE=AE}
tex.define {\ OE=OE}
tex.define {\ aa=aa}
tex.define {\ AA=AA}
tex.define {\o=o}
tex.define {\O=O}
tex.define {\l=l}

1Note that the short notation of german.sty or babel is not understood by BibTEX nor by BibTool.

84 C. Sample Resource Files

tex.define {\L=L}
tex.define {\i=i}
tex.define {\j=j}
tex.define {\ TeX=TeX}
tex.define {\ LaTeX = LaTeX }
tex.define {\ LaTeXe = LaTeX2e }
tex.define {\ BibTeX = BibTeX }
tex.define {\ AMSTeX = AMSTeX }

C.4. Other Resource Files

The distribution contains additional resource files. Some of them are sketched here.
Others may be contained in the distribution as well. Look into the appropriate directory.

iso2tex
define rewrite rules to translate ISO 8859-1 characters into BibTEX compatible
sequences.

iso def
define macro equivalents for ISO 8859-1 characters into TEX compatible sequences.

sort fld
defines a sort order for the common BibTEX entry types.

check y
contains a sample for semantic checks. The year field is checked to be a suitable
number.

month
tries to introduce BibTEX strings for month names. Provisions are made to preserve
other information contained in the month field.

opt
copes with OPT prefixes as introduced e.g. by bibtex-mode.

braces
tries to replace double quotes as field delimiters by braces.

keep bibtex
defines the entry types and attributes according to the standard BibTEX styles to
be kept. Any undeclared attribute will be deleted.

keep biblatex
defines the entry types and attributes according to the standard BibLATEX styles
to be kept. Any undeclared attribute will be deleted.

Bibliography

[GMS94] Michel Goosens, Frank Mittelbach, and Alexander Samarin. The LATEX com-
panion. Addison-Wesley Publishing Company, 1994.

[Knu89] Donald E. Knuth. The TEXbook. Addison-Wesley Publishing Company, 15th
edition, 1989.

[Lam94] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley
Publishing Company, 2nd edition, 1994.

[Leh14] Philipp Lehman. The Biblatex Package – Programmable Bibliographies and
Citations, version 2.9a edition, June 2014.

[Pat88a] Oren Patashnik. BibTEXing, 1988.
[Pat88b] Oren Patashnik. Designing BibTEX Styles, 1988.

85

Index

’ . 19
(. 19
) . 19
* . 10
, . 19
-- .12, 20, 21, 36, 66
= . 19
¨ . 19
. 10, 19
-# . 73
% .19

add.field . 61, 62, 68
apply.alias . 73, 74
apply.include . 73, 74
apply.modify .74

BIBINPUTS . 22
BibLATEX 5, 14, 37, 38, 63, 78, 79, 82, 84
BibTEX. 1, 4–8, 10–15, 17–19, 21–28, 33,

36, 37, 40–45, 53, 54, 58, 63, 64, 68,
71–73, 75, 83–85, 87

bibtex.env.name .22, 23
bibtex.search.path . 22, 23
BIBTOOL . 18
BIBTOOLRSC . 18

-c . 39
check.case.sensitive . 70, 71
check.double . 69, 71
check.double.delete .69, 71
check.error.rule . 69, 70
check.rule . 69–71
check.warning.rule . 69, 70
clear.crossref.map . 38
clear.ignored.words . 56, 61
count.all . 72, 73
count.used . 72, 73
crossref.limit . 37, 53
crossref.map . 38

%D . 48
%d . 8, 47–48, 54, 62, 66

-d .69, 71
default.key . 40, 43, 44, 53
delete.field 13, 14, 62, 65, 68
digit . 42, 43
dir.file.separator . 22, 23

Emacs . 10
empty . 41, 42
env.separator . 22, 23
expand.crossref . 37, 39
expand.macros . 71, 72
expand.xdata . 39
extract.file . 33, 39
extract.regex .36, 39

-F .41, 44
%f . 58, 59
-f . 9, 39, 44
fmt.et.al . 43, 44, 53
fmt.inter.name . 43, 44, 53
fmt.name.name . 43, 44, 53
fmt.name.pre . 43, 44, 53
fmt.name.title 40, 43, 44, 53
fmt.title.title . 43, 44, 53
fmt.word.separator . 43, 49

-h .18, 21
HOME . 18

-i . 12, 14, 18, 19, 21, 23
ignored.word .49, 52, 56, 61
input . 21, 23

%j . 58, 59

-K . 9
-k . 9
keep.field . 62, 63
key.base . 40, 42–44
key.expand.macros . 43, 44
key.format . 40, 42, 44
key.generation . 41, 44
key.make.alias . 44
key.number.separator . 42–44

87

88 Index

%l . 13, 58, 59
long . 40, 41, 43
lower . 42, 43

-m . 72
macro.file . 71, 72

%N . 8, 30, 45–47, 55, 58
%#N . 51
%#n .51
%n .9, 46, 54, 58
new.entry.type . 25, 29
new.field.type . 27, 29
new.format.type .58, 61
new.long . 41
new.short . 41

-o . 9–12, 14, 23, 24
off . 20, 68
on .20, 66
output.file . 23, 24

%#p . 50–51
%p . 46, 58
parse.exit.on.error . 24, 29
pass.comments . 25, 29, 68
preserve.key.case 28–30, 42, 44
preserve.keys . 41, 42, 44
print . 20, 21
print.align . 26, 27, 29
print.align.comment . 26, 29
print.align.key . 26, 27, 29
print.align.preamble . 26
print.align.string . 26, 27, 29
print.all.strings25, 33, 71, 72
print.braces .72
print.comma.at.end . 26, 29
print.deleted.entries . 68
print.deleted.prefix . 68
print.entry.types .25, 26
print.equal.right . 26
print.indent . 26, 27, 29
print.line.length . 26, 27, 29
print.newline . 26
print.parentheses .72
print.print.newline . 29
print.terminal.comma . 26
print.use.tab . 27, 29
print.wide.equal . 27, 29

-q . 24
quiet . 24

-R . 18, 19, 21
-r . 12–14, 18–21

regular expression .10
rename.field . 63, 64, 68
resource . 20, 21
resource.search.path . 18, 21
rewrite.case.sensitive64, 66, 68
rewrite.limit . 66
rewrite.rule .64–70

-S . 7, 29, 31
%#s . 51
%s . 48, 53, 56, 62, 66
-s .7, 8, 29, 31
select .35, 39
select.by.non.string 34, 35, 39
select.by.string . 34, 39
select.by.string.ignored34, 39
select.case.sensitive 34–36, 39
select.crossrefs . 35, 36, 39
select.fields . 36, 39
select.non .35, 39
short .40, 41, 43
sort . 13, 29, 31
sort.cased .30, 31
sort.format 8, 13, 30, 31, 68, 69
sort.macros . 30, 31
sort.order . 67, 68
sort.reverse .13, 29, 31
suppress.initial.newline27, 29
symbol.type . 28, 29, 71

%T . 49, 55
%#T . 52
%#t . 52
%t . 49, 53
t . 20
tex.define . 56, 57, 61
TrUe . 20
true . 20

unique.field . 69
upper . 42, 43

%v . 58, 59
-v . 24
verbose . 24

%W . 50
%#W . 52
%#w . 51–52
%w . 50

-X . 11, 35, 39
-x . 11, 33, 39

yes . 20

	Introduction
	Related Programs
	Using BibTool—Some Instructive Examples
	Sorting and Merging
	Key Generation
	Normalization
	Extracting Entries for a Document
	Extracting Entries Matching a Regular Expression
	Translating ISO 8859-1 Characters
	Correctly Sorting Cross-referenced Entries
	Petering Out Fields
	BibTool for BibLaTeX

	Interfacing BibTool with Other Programming Languages
	Getting BibTool, Hot News, and Bug Reports
	Contributing to BibTool

	Reference Manual
	Beware of the Command Line
	Command Line Usage and Resource Files
	Exit Code
	Input File Specification and Search Path
	Output File Specification and Status Reporting
	Parsing and Pretty Printing
	Sorting
	Regular Expression Matching
	Selecting Items
	Extracting by aux Files
	Extracting with Sub-string Matching
	Extracting with Regular Expressions
	Extracting and Cross-references
	Inheritance and Cross-references

	Key Generation
	Aliases for Renamed Entries

	Format Specification
	Constant Parts
	Formatting Fields
	Pseudo Fields
	Conjunctions
	If-Then-Else
	Alternatives
	Grouping
	Ignored Words
	Expanding TeX/LaTeX Macros
	Name Formatting
	Example

	Field Manipulation
	Adding Fields
	Deleting Fields
	Keeping Fields
	Renaming Fields
	Field Rewriting
	Field Ordering

	Semantic Checks
	Finding Double Entries
	Non-unique Fields
	Regular Expression Checks

	Strings – also called Macros
	Statistics
	BibTeX1.0 Support
	Including Bibliographies
	Aliases
	Modifications

	Limitations
	Limits of BibTool
	Bugs and Problems

	Sample Resource Files
	The Default Settings
	BibLaTeX Support
	Useful Translations
	Other Resource Files

